Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer, and adaptive evolution in experimental organisms1–9. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring phenotypic variation and improved fitness over that of euploid counterparts. In this work, we designed a novel scheme to generate, through random meiotic segregation, 38 stable and fully isogenic aneuploid yeast strains with distinct karyotypes and genome contents between 1N and 3N without involving any genetic selection. Through phenotypic profiling under various growth conditions or in the presence of a panel of chemotherapeutic or antifungal drugs, we found that aneuploid strains exhibited diverse growth phenotypes, and some aneuploid strains grew better than euploid control strains under conditions suboptimal for the latter. Using quantitative mass spectrometry-based proteomics, we show that the levels of protein expression largely scale with chromosome copy numbers, following the same trend observed for the transcriptome. These results provide strong evidence that aneuploidy directly impacts gene expression at both the transcriptome and proteome levels and can generate significant phenotypic variation that could bring about fitness gains under diverse conditions. Our findings suggest that the fitness ranking between euploid and aneuploid cells is context- and karyotype-dependent, providing the basis for the notion that aneuploidy can directly underlie phenotypic evolution and cellular adaptation.
Large-scale genomics has enabled proteomics by creating sequence infrastructures that can be used with mass spectrometry data to identify proteins. Although protein sequences can be deduced from nucleotide sequences, posttranslational modifications to proteins, in general, cannot. We describe a process for the analysis of posttranslational modifications that is simple, robust, general, and can be applied to complicated protein mixtures. A protein or protein mixture is digested by using three different enzymes: one that cleaves in a site-specific manner and two others that cleave nonspecifically. The mixture of peptides is separated by multidimensional liquid chromatography and analyzed by a tandem mass spectrometer. This approach has been applied to modification analyses of proteins in a simple protein mixture, Cdc2p protein complexes isolated through the use of an affinity tag, and lens tissue from a patient with congenital cataracts. Phosphorylation sites have been detected with known stoichiometry of as low as 10%. Eighteen sites of four different types of modification have been detected on three of the five proteins in a simple mixture, three of which were previously unreported. Three proteins from Cdc2p isolated complexes yielded eight sites containing three different types of modifications. In the lens tissue, 270 proteins were identified, and 11 different crystallins were found to contain a total of 73 sites of modification. Modifications identified in the crystallin proteins included Ser, Thr, and Tyr phosphorylation, Arg and Lys methylation, Lys acetylation, and Met, Tyr, and Trp oxidations. The method presented will be useful in discovering co-and posttranslational modifications of proteins.
Summary F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as a new interactor of the F-box protein Cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCFCyclin F to maintain balanced dNTP pools and genome stability. After DNA damage, Cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of Cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a non-degradable RRM2 mutant. In summary, we have identified a novel biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.