Mitochondria of spermatozoa are different from the corresponding organelles of somatic cells, in both their morphology and biochemistry. The biochemical differences are essentially related to the existence of specific enzyme isoforms, which are characterized by peculiar kinetic and regulatory properties. As mitochondrial energy metabolism is a key factor supporting several sperm functions, these organelles host critical metabolic pathways during germ cell development and fertilization. Furthermore, spermatozoa can use different substrates, and therefore activate different metabolic pathways, depending on the available substrates and the physico-chemical conditions in which they operate. This versatility is critical to ensure fertilization success. However, the most valuable aspect of mitochondria function in all types of cells is the production of chemical energy in the form of ATP which can be used, in the case of spermatozoa, for sustaining sperm motility. The latter, on the other hand, represents one of the major determinants of male fertility. Accordingly, the presence of structural and functional alterations in mitochondria from asthenozoospermic subjects confirms the important role played by these organelles in energy maintenance of sperm motility. The present study gives an overview of the current knowledge on the energy-producing metabolic pathways operating inside human sperm mitochondria and critically analyse the differences with respect to somatic mitochondria. Such a comparison has also been carried out between the functional characteristics of human sperm mitochondria and those of other mammalian species. A deeper understanding of mitochondrial energy metabolism could open up new avenues of investigation in bioenergetics of human sperm mitochondria, both in physiological and pathological conditions.
The role of mitochondria in sperm motility was the subject of several investigations. However, different views on this topic emerged among scientists. In particular, very little is known on the mechanisms of energy production occurring during human sperm capacitation and related processes. In this study, we have investigated the mitochondrial respiratory efficiency in human sperm samples from normozoospermic subjects before and after swim-up selection and incubation under capacitating condition. Sperm cells, selected by swim-up treatment, were incubated up to 24 h and then demembranated by hypotonic swelling at selected times. The oxygen uptake rate was measured in both basal and swim-up selected samples by a polarographic assay. Mitochondria of swim-up selected cells showed an impressive oxygen consumption rate, which was about 20 times higher than that measured in basal samples. The high mitochondrial respiratory efficiency remained stable up to 24 h after the swim-up treatment. The respiration control ratio, the substrate specificity and the inhibitor sensitivity in the swim-up selected samples were similar to those of basal samples thereby suggesting that the physiology of mitochondria was preserved after the swim-up treatment. Furthermore, the remarkably high mitochondrial respiration in swim-up selected samples allowed the oxygraphic analysis of just 200,000 sperm cells. Sperm selection and incubation under capacitating condition are therefore associated with a high activity of the mitochondrial respiratory chain. The sperm oxygen consumption rate could be useful to exclude mitochondria malfunctioning in male infertility.
Purpose The purpose of this study was to evaluate the oxidative stress status (OS) of follicular fluid (FF) and the oocyte quality in women with polycystic ovary syndrome (PCOS) undergoing different ovarian stimulation protocols. Methods FF samples were collected after gonadotropin administration in association or not with metformin or D-chiro-inositol (DCI). OS status was then evaluated by checking the follicular fluid protein oxidation profile after specific labeling of aminoacidic free-SH groups, and two-dimensional electrophoresis followed by qualitative and semiquantitative analysis. Oocyte quality was assessed by international morphological criteria. Results Our data indicated that both treatments, even if to different extent, recovered a significantly high level of free-SH groups in FF proteins of PCOS women clearly indicating a decrease of OS level with respect to that found in FF samples from gonadotropins alone treated women. A higher number of good quality MII oocytes was also observed in DCI (P<0.05) or metformin (P<0.05) study groups in comparison to untreated control group. Conclusion A natural supplement and a drug both showed a statistically significant positive effect on follicular milieu by decreasing the oxidative damage on FF proteins, as well as in recovering good quality oocytes.
Chromosomal abnormalities are relevant causes of human infertility, affecting 2 -14 % of infertile males. Patients with seminal anomalies could be affected by improper meiotic recombination and increased sperm chromosome aneuploidy. Since the transmission of a haploid chromosomal asset is fundamental for embryo vitality and development, the study of sperm chromosomes has become fundamental because intracytoplasmic sperm injection allows fertilization in cases of severe male infertility.In this chapter we summarize the data on the incidence of sperm aneuploidy, detected by fluorescence in situ hybridization (FISH), in infertile men with normal or abnormal karyotype. The possibility of reducing sperm chromosomal imbalance is also reported.Among control males, the lowest aneuploidy rate was detected (range: 0.09 -0.14 % for autosomes; 0.04 -0.10 % for gonosomes). In infertile patients with normal karyotype, the severity of semen alteration is correlated with the frequency of aneuploidy, particularly for X and Y chromosomes. Among patients with abnormal karyotype, 47,XXY and 47,XYY carriers showed a high variability of sperm aneuploidy both for gonosomes and autosomes. In Robertsonian translocation carriers, the increase in aneuploidy rate was particularly evident for total sex disomy, and resulted mainly from interchromosomal effect (ICE). In reciprocal translocation carriers, a high percentage of unbalanced sperm (approximately 50 %) was detected, perhaps mostly related to ICE.Sperm chromosomal constitution could be analyzed to obtain more accurate information about the causes of male infertility. It would be worthwhile to evaluate the benefits of a therapy with recombinant Follicle Stimulating Hormone (rFSH) on sperm chromosome segregation in selected infertile males.
Glycodelin-A (GdA) has been proposed to represent a potential biomarker of endometrial function, but little is known about its expression during the different phases of the menstrual cycle and under pathological conditions. In the light of its potential importance also in embryo implantation, we aimed to evaluate the expression profile of GdA as well as the presence of different glycosylated glycoforms and the immunolocalization in endometrial tissue from women with endometriosis and in women with proven fertility, at different times during the menstrual cycle. Our results showed that GdA is synthesized by endometrial epithelial and stromal cells, both in healthy endometrium and eutopic endometrium from women with endometriosis, with a profile including several glycosylated glycoforms, differentially expressed in each phase of the menstrual cycle. During the secretory phase, a significant increase in GdA protein expression, with a different glycoforms profile, was observed in endometriotic eutopic endometrium. Protein localization in eutopic endometrial tissue resulted significantly different in comparison with endometrium from women with proven fertility. This study indicate that GdA is a complex glycoprotein including up to 6 different glycoforms specifically expressed during the different phase of the menstrual cycle; in pathologic conditions such as endometriosis, the expression profile is altered possibly related to the impaired endometrial receptivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.