The OxyS regulatory RNA integrates the adaptive response to hydrogen peroxide with other cellular stress responses and protects against DNA damage. Among the OxyS targets is the rpoS-encoded σ s subunit of RNA polymerase. σ s is a central regulator of genes induced by osmotic stress, starvation and entry into stationary phase. We examined the mechanism whereby OxyS represses rpoS expression and found that the OxyS RNA inhibits translation of the rpoS message. This repression is dependent on the hfqencoded RNA-binding protein (also denoted host factor I, HF-I). Co-immunoprecipitation and gel mobility shift experiments revealed that the OxyS RNA binds Hfq, suggesting that OxyS represses rpoS translation by altering Hfq activity.
OxyS is a small untranslated RNA which is induced in response to oxidative stress in Escherichia coli. This novel RNA acts as a global regulator to activate or repress the expression of as many as 40 genes, including the fhlA-encoded transcriptional activator and the rpoS-encoded σ s subunit of RNA polymerase. Deletion analysis of OxyS showed that different domains of the small RNA are required for the regulation of fhlA and rpoS. We examined the mechanism of OxyS repression of fhlA and found that the OxyS RNA inhibits fhlA translation by pairing with a short sequence overlapping the Shine-Dalgarno sequence, thereby blocking ribosome binding/translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.