Osteopetrosis is the result of mutations affecting osteoclast function. Careful analyses of osteopetrosis have provided instrumental information on bone remodeling, including the coupling of bone formation to bone resorption. Based on a range of novel genetic mutations and the resulting osteoclast phenotypes, we discuss how osteopetrosis models have clarified the function of the coupling of bone formation to bone resorption, and the pivotal role of the osteoclast and their function in this phenomenon. We highlight the distinct possibility that osteoclast activities can be divided into two separate avenues: bone resorption and control of bone formation.
Dissolution of the inorganic phase of bone by the osteoclasts mediated by V-ATPase and ClC-7 is a prerequisite for bone resorption. Inhibitors of osteoclastic V-ATPase or ClC-7 are novel approaches for inhibition of osteoclastic bone resorption. By testing natural compounds in acidification assays, diphyllin was identified. We characterized diphyllin with respect to the pharmacological effects on osteoclasts.Introduction: Osteoclastic acidification of the resorption lacuna and bone resorption requires activity of both V-ATPase and the chloride channel ClC-7. Inhibition of these processes represents a novel approach for treatment of bone metabolic disorders. We identified diphyllin, a novel inhibitor of V-ATPase, and characterized this natural compound with respect to activity in human osteoclasts. Materials and Methods: Diphyllin was tested in the acid influx assay and V-ATPase assay using bovine chromaffin granules. Human osteoclasts were generated from CD14+ monocytes cultured with macrophagecolony stimulating factor (M-CSF) and RANKL. The effect of diphyllin on lysosomal acidification in human osteoclasts was studied using acridine orange. The effect of diphyllin on bone resorption by osteoclasts was measured as release of C-terminal cross-linked telopeptide of type I collagen (CTX-I) and calcium into the supernatants and by scoring pit area. Osteoclast number, TRACP activity, and cell viability were measured. Furthermore, the effect of diphyllin on bone nodule formation was tested using the mouse osteoblast cell line MC3T3-E1. Results: In the acid influx assay, diphyllin potently inhibited the acid influx (IC 50 ס 0.6 nM). We found that diphyllin inhibited V-ATPase with an IC 50 value of 17 nM, compared with 4 nM for bafilomycin A1. Moreover, diphyllin dose-dependently inhibited lysosomal acidification in human osteoclasts. Furthermore, we found that diphyllin inhibited human osteoclastic bone resorption measured by CTX-I (IC 50 ס 14 nM), calcium release, and pit area, despite increasing TRACP activity, numbers of osteoclasts, and cell viability. Finally, diphyllin showed no effect on bone formation in vitro, whereas bafilomycin A1 was toxic. Conclusions:We identified a natural compound that potently inhibits V-ATPase and thereby lysosomal acidification in osteoclasts, which leads to abrogation of bone resorption. Because recent studies indicate that inhibition of the osteoclastic acidification leads to inhibition of resorption without inhibiting formation, we speculate that diphyllin is a potential novel treatment for bone disorders involving excessive resorption.
Mice deficient in the chloride channel ClC-7, which is likely involved in acidification of the resorption lacuna, display severe osteopetrosis. To fully characterize the osteopetrotic phenotype, the phenotypes of osteoclasts and osteoblasts were evaluated. ClC-7(-/-) mice and their corresponding wild-type littermates were killed at 4-5 weeks of age. Biochemical markers of bone resorption (CTX-I), osteoclast number (TRAP5b), and osteoblast activity (ALP) were evaluated in serum. Splenocytes were differentiated into osteoclasts using M-CSF and RANKL. Mature osteoclasts were seeded on calcified or decalcified bone slices, and CTX-I, Ca(2+), and TRAP were measured. Acidification rates in membrane vesicles from bone cells were measured using acridine orange. Osteoblastogenesis and nodule formation in vitro were investigated using calvarial osteoblasts. ClC-7(-/-) osteoclasts were unable to resorb calcified bone in vitro. However, osteoclasts were able to degrade decalcified bone. Acid influx in bone membrane vesicles was reduced by 70% in ClC-7(-/-) mice. Serum ALP was increased by 30% and TRAP5b was increased by 250% in ClC-7(-/-) mice, whereas the CTX/TRAP5b ratio was reduced to 50% of the wild-type level. Finally, evaluation of calvarial ClC-7(-/-) osteoblasts showed normal osteoblastogenesis. In summary, we present evidence supporting a pivotal role for ClC-7 in acidification of the resorption lacuna and evidence indicating that bone formation and bone resorption are no longer balanced in ClC-7(-/-) mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.