Solving optimization problems on near term quantum devices requires developing error mitigation techniques to cope with hardware decoherence and dephasing processes. We propose a mitigation technique based on the LHZ architecture. This architecture uses a redundant encoding of logical variables to solve optimization problems on fully programmable planar quantum chips. We discuss how this redundancy can be exploited to mitigate errors in quantum optimization algorithms. In the specific context of the quantum approximate optimization algorithm (QAOA), we show that errors can be significantly mitigated by appropriately modifying the objective cost function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.