Cyanamide (CA) has been reported as a natural compound produced by hairy vetch (Vicia villosa Roth.) and it was shown also to be an allelochemical, responsible for strong allelopathic potential in this species. CA phytotoxicity has been demonstrated on various plant species, but to date little is known about its mode of action at cellular level. Treatment of tomato (Solanum lycopersicum L.) roots with CA (1.2 mM) resulted in inhibition of growth accompanied by alterations in cell division, and imbalance of plant hormone (ethylene and auxin) homeostasis. Moreover, the phytotoxic effect of CA was also manifested by modifications in expansin gene expression, especially in expansins responsible for cell wall remodeling after the cytokinesis (LeEXPA9, LeEXPA18). Based on these results the phytotoxic activity of CA on growth of roots of tomato seedlings is likely due to alterations associated with cell division.Electronic supplementary materialThe online version of this article (doi:10.1007/s00425-012-1722-y) contains supplementary material, which is available to authorized users.
Defined changes in the cell wall directed by many proteins accompany every morphogenetic process in plants. Xyloglucan endotransglucosylase/hydrolase proteins (XTH; EC 2.4.1.207) have the potential to modify the hemicellulose matrix within the cell wall. Cs-XTH1 and Cs-XTH3 genes, which encode XTH proteins, were found among numerous genes that are differentially expressed after the induction of cucumber somatic embryogenesis. The expression of these genes increased during somatic embryogenesis. The Cs-XTH1 gene was localized on the second chromosome near the centromere region, whereas Cs-XTH3 was found in the middle of the fifth chromosome's longer arm. Northern blot hybridization showed that both genes were preferentially expressed in roots. We also observed higher accumulation of both transcripts in somatic embryos than in the proembryogenic mass. The localization of mRNA by in situ hybridization revealed that the Cs-XTH1 transcripts were largely accumulated in the presumptive cotyledon primordia of somatic embryos. The XTH gene family consists of a number of genes with a high degree of structural similarity. Screening a cucumber genomic library has identified other members of this gene family. The intron/exon structure, sequence similarities and the close chromosomal distance between some members suggest their common evolutionary origin. The involvement of XTH-related genes in somatic embryo formation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.