The conventional sinusoidal pulse width modulation (SPWM) and the space vector PWM (SVPWM) switching techniques are widely used for power converters due to their ability to control the harmonic content of the output voltage. The most popular PWM techniques used in matrix converters are direct space vector modulation (DSVM) and indirect space vector modulation (ISVM). Since these techniques are complex and difficult to implement, there is demand for a PWM technique with minimum computation to operate matrix converters continuously. In this paper, decoupled indirect duty cycle (DIDC) PWM technique is proposed for the conventional matrix converter (CMC). This technique eliminates the duty cycle computations required for every switching period. In addition, the carrier frequency adjustment technique (CFAT) is proposed to improve the quality of both output voltages and input currents. A MATLAB-Simulink-based simulation proves the efficiency of the proposed algorithms, and an experimental setup is developed to validate them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.