SummaryCytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.
Cytochrome P450 monooxygenases can catalyse the stereoselective C-H activation of a very broad range of substrates. Prediction and control of enantioselectivity of this enzyme class is of great interest for the synthesis of high-value chiral molecules. Here we have used a combination of molecular dynamics simulations and experimental screening to study the enantioselectivity of a library of active-site mutants of chimeric P450cam-RhFRed towards the benzylic hydroxylation of structurally related regioisomers of ethylmethylbenzene. Small variations either in substrate structure or in enzyme active site architecture were shown to lead to dramatic changes in enantioselectivity; this was broadly in agreement with computational predictions. In addition to validating computational approaches, these studies have provided us with a deeper understanding of effects that might control stereoselectivity in these biooxidation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.