We fused the epitope-recognizing fragment of heavy-chain antibodies from Camelidae sp. with fluorescent proteins to generate fluorescent, antigen-binding nanobodies (chromobodies) that can be expressed in living cells. We demonstrate that chromobodies can recognize and trace antigens in different subcellular compartments throughout S phase and mitosis. Chromobodies should enable new functional studies, as potentially any antigenic structure can be targeted and traced in living cells in this fashion.
The spatial and temporal organization of DNA replication was investigated in living cells with a green fluorescent protein fusion to the DNA polymerase clamp PCNA. In situ extractions and photobleaching experiments revealed that PCNA, unlike RPA34, shows little if any turnover at replication sites, suggesting that it remains associated with the replication machinery through multiple rounds of Okazaki fragment synthesis. Photobleaching analyses further showed that the transition from earlier to later replicons occurs by disassembly into a nucleoplasmic pool of rapidly diffusing subcomponents and reassembly at newly activated sites. The fact that these replication sites were de novo assembled in close proximity to earlier ones suggests that activation of neighboring origins may occur by a domino effect possibly involving local changes in chromatin structure and accessibility.
DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.