Recruitment of myeloid cells during inflammatory reactions plays an important role in the propagation and resolution of inflammation. However, the identification and characterization of these cells in mice has been hampered by cellular heterogeneity at the functional and phenotypic level. We have defined criteria for the rapid flow-cytometric identification of monocytes (M o ), macrophages (M ¶ ), neutrophils (N eu ) and eosinophils (E os ) in murine tissues using novel and established myeloid markers. These criteria were applied to the study of naive mice and mice with experimentally induced inflammation, both local and systemic, and also to a murine model of tumor progression. We show that the murine 7/4 antigen and the gglucan receptor, Dectin-1, are particularly useful for the sub-division of myeloid cells into individual populations, even when inflammatory conditions modulate their surface expression. Furthermore, 7/4 expression allows distinction between M o recently recruited to a site and the resident cells already present. These studies highlight the heterogeneity of the murine M o /M ¶ -lineage, define an extended phenotype for murine myeloid cells and greatly facilitate the ex vivo characterization of these cells during very different models of inflammation.
Most of the mice bearing a s.c. BW-Sp3 lymphoma tumor mount a CD8+ T cell-mediated response resulting in tumor regression. Nonetheless, tumor progression occurs in some of the recipients and is associated with CTL inactivity. We demonstrated that T cell-activating APC were induced in regressors whereas T cell suppressive myeloid cells predominated in the spleen of progressors. Indeed, in vitro depletion of either the adherent or the CD11b+ populations restored T cell cytotoxicity and proliferation in these mice. This CTL inhibition was cell-to-cell contact-dependent but not mediated by NO. However, the same progressor suppressive cells prevented the activity of in vitro-restimulated CTLs derived from regressors in a cell-to-cell contact and NO-dependent fashion. Thus, either the NO-dependent or -independent suppressive pathway prevailed, depending on the target CTL population. In addition, the suppressive population expressed a high arginase activity, suggesting an association of the suppressive phenotype with alternatively activated (M2) myeloid cells. However, the high arginase activity is not directly involved in the suppressive process. Our results provide new insights for myeloid cell-mediated CTL inhibition during cancer progression.
On August 24, 1998, Remicade ® (infliximab), the first tumor necrosis factor-α (TNF) inhibitor, received its initial marketing approval from the US Food and Drug Administration for the treatment of Crohn’s disease. Subsequently, Remicade was approved in another five adult and two pediatric indications both in the USA and across the globe. In the 20 years since this first approval, Remicade has made several important contributions to the advancement of science and medicine: 1) clinical trials with Remicade established the proof of concept that targeted therapy can be effective in immune-mediated inflammatory diseases; 2) as the first monoclonal antibody approved for use in a chronic condition, Remicade helped in identifying methods of administering large, foreign proteins repeatedly while limiting the body’s immune response to them; 3) the need to establish Remicade’s safety profile required developing new methods and setting new standards for postmarketing safety studies, specifically in the real-world setting, in terms of approach, size, and duration of follow-up; 4) the study of Remicade has improved our understanding of TNF’s role in the immune system, as well as our understanding of the pathophysiology of a range of diseases characterized by chronic inflammation; and 5) Remicade and other TNF inhibitors have transformed treatment practices in these chronic inflammatory diseases: remission has become a realistic goal of therapy and long-term disability resulting from structural damage can be prevented. This paper reviews how, over the course of its development and 20 years of use in clinical practice, Remicade was able to make these contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.