Absent in melanoma 2 (AIM2) is a member of the interferon-inducible HIN-200 protein family. Recent findings point to a role of AIM2 function in both inflammation and cancer. In response to foreign cytoplasmic DNA, AIM2 forms an inflammasome, resulting in caspase activation in inflammatory cells. Moreover, AIM2 reduces breast cancer cell proliferation and mammary tumor growth in a mouse model and shows a high frequency of frameshift mutations in microsatellite unstable (MSI-H) gastric, endometrial and colorectal cancers. However, the consequences of AIM2 restoration in AIM2-deficient colon cancer cells have not yet been examined. Using different constructs for expression of AIM2 fusion proteins, we found that AIM2 restoration clearly suppressed cell proliferation and viability in HCT116 cells as well as in cell lines derived from other entities. In contrast to previous reports from breast cancer cells, our cell cycle analyses of colon cancer cells revealed that AIM2-mediated inhibition of cell proliferation is associated with accumulation of cells at late S-phase, resulting in G2/M arrest. The latter correlated well with upregulation of cyclin D3 and p21 Waf1/Cip1 as well as with inhibition of cdc2 activity through Tyr-15 phosphorylation. Furthermore, AIM2 restoration affected the adhesion of colorectal cancer cells to fibronectin and stimulated the invasion through extracellular matrix-coated membrane in transwell assays. Consistent with this phenotype, AIM2 induced the expression of invasion-associated genes such as VIM and MCAM, whereas ANXA10 and CDH1 were downregulated. Our data suggest that AIM2 mediates reduction of cell proliferation by cell cycle arrest, thereby conferring an invasive phenotype in colon cancer cells.
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions.
The Wilms' tumor suppressor gene (WT1) has been shown to be overexpressed in acute and chronic leukemias and in a variety of solid human malignancies, including cancers of the breast and lung. In our present study, we investigated the potential role of WT1 gene in human colon cancer. WT1 mRNA and protein expression was analyzed in a panel of human colon cancer cell lines and primary colon carcinomas by RT-PCR and Western blot analysis, respectively. A mutational screen of WT1 zinc-finger region was carried out by sequence analysis. Finally, using peptide-stimulated cytotoxic T cells it was investigated whether WT1-expressing colon tumor cells are a potential target for antigen-specific immunotherapy. Medium to high abundant levels of WT1 mRNA were detected by RT-PCR in 10 of 12 (83%) colon cell lines and by quantitative, real-time RT-PCR in 13 of 15 (87%) primary tumors, whereas only very low levels of expression were found in 2 primary tumors. Interestingly, however, low levels of WT1 mRNA were also detected in all samples derived from normal colon mucosa. When RT-PCR products were examined by sequence analysis, both ؉KTS and ؊KTS splice isoforms but no zinc-finger mutations were found, suggesting that the wild-type form of the WT1 gene is expressed. To determine whether the WT1 protein can serve as a target antigen for immunotherapy, 2 HLA-A2.1-restricted WT1 peptides (Db126 and WH187) were used for the in vitro induction of WT1-specific cytotoxic T lymphocytes (CTLs). The WH187-specific CTLs not only lysed target cells pulsed exogenously with cognate peptide but also WT1-expressing colon tumor cells in a HLA-restricted manner. These findings identify the WT1 protein as an attractive target for the development of antigen-specific immunotherapy in human colon cancer.
Staphylococcus aureus is a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed an in silico typing scheme for the software SeqSphere ؉ (Ridom GmbH, Münster, Germany). The implemented target genes (n ؍ 182) correspond to those queried by the Identibac S. aureus Genotyping DNA microarray (Alere Technologies, Jena, Germany). The in silico scheme was evaluated by comparing the typing results of microarray and of WGS for 154 human S. aureus isolates. A total of 96.8% (n ؍ 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosome mec element types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. Staphylococcus aureus is a Gram-positive facultative pathogenic bacterium that is responsible for a high percentage of hospitaland community-acquired infections worldwide. An infection with S. aureus may manifest itself in a broad variety of diseases, ranging from rather harmless local skin infections to severe bacteremia or intoxications (1). This extensive spectrum of virulence is owed, in part, to the bacterium's individual equipment with virulence factors. Analyzing these virulence factors is difficult because purified staphylococcal toxins do not essentially cause distinctive symptoms when administered in the absence of the bacterium, and the specific knockout of single virulence factors does not necessarily reduce the bacterial virulence (2). Thus, it seems that the combination of different virulence factors, their regulation and transcription, and their allelic variants play a crucial role in determining the eventually expressed virulence phenotype. Therefore, it is important to determine not only the presence or absence of single key factors, such as, e.g., Panton-Valentine leucocidin (PVL) or certain enterotoxins, but to obtain a comprehensive picture of the exact allelic variants of as many virulence-associated genes and their regulatory systems as possible. With regar...
The CC531 cell line has been widely used to study different aspects of tumor growth and metastasis and provides an excellent experimental platform to develop novel antitumor strategies. To characterize the CC531 model at the molecular level, we screened for mutations in genes covering important signal-transduction pathways that are known to play major roles during colon carcinogenesis, the wnt and the ki-ras signaling pathways. We found both a prototypic -catenin (Ctnnb1) mutation (Thr 41 Ile) and a ki-ras (G12D) mutation, providing unambiguous evidence for the constitutive activation of these pathways in CC531 cells. We further established comprehensive gene expression profiles of CC531 cells and investigated the molecular response to 2 antitumor drugs, butyrate and aspirin. Using oligonucleotide microarrays, we screened the expression levels of 7,700 genes and identified a total of 398 genes whose expression was significantly changed upon treatment with butyrate. When using aspirin, 121 genes were significantly altered. Interestingly, 36 genes were regulated by both butyrate and aspirin and 35 of them were regulated in the same direction. We found 7 differentially expressed genes, cyclin D1, cyclin E, c-myc, Fosl1, c-fos, Cd44 and follistatin, which are known targets of the -catenin and/or the ras pathway. In all cases, butyrate and aspirin reversed the changes in expression normally found in response to active signaling of these oncogenic pathways. Colon cancer is the third most common malignant tumor in the Western world and the second most frequent cause of cancer death. 1 According to the concept of Fearon and Vogelstein, 2 colorectal tumors arise via a multistep process as the result of accumulating genetic and epigenetic alterations that affect different growth-regulating genes. The neoplastic process is thought to be initiated by constitutive activation of the wnt signaling pathway brought by mutations in regulatory genes, e.g., APC, Axin and CTNNB1, all resulting in the activation of gene transcription by -catenin. 3 Mutations in the Ki-Ras (Kirsten-ras) gene have been found in 30 -50% of colon tumors 4 and can be observed already in small adenomas, whereas p53 gene mutations occur during carcinogenesis only at the adenoma/carcinoma transition. 5 ki-ras and Ctnnb1 mutations have been reported to occur also at high frequency in experimentally induced rodent colon tumors. 6,7 In addition, oncogenic CTNNB1 mutations have been observed in human embryonic kidney-derived tumors. 8 Several epidemiologic and pharmacologic studies indicate that NSAIDs can reduce the incidence of colorectal cancers in humans and experimental animals and reduce the number and size of polyps in patients with FAP cancer. 9 In particular, aspirin revealed chemopreventive effects on carcinogen-induced colon tumors 10,11 in rodents. The effects have been generally attributed to inhibition of the enzyme activity of COX-1 and COX-2, which are highly expressed in colorectal cancers; but additional mechanisms likely contribute to the a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.