The prevailing hypothesis stipulates that the preamyloid oligomers of Aβ are the main culprits associated with the onset and progression of Alzheimer's disease (AD), which has prompted efforts to search for therapeutic agents with the ability to inhibit Aβ oligomerization and amyloidogenesis. However, clinical progress is impeded by the limited structural information about the neurotoxic oligomers. To address this issue, we have adopted a synthetic approach, where a library of oligopyridylamide-based small molecules was tested against various microscopic events implicated in the self-assembly of Aβ. Two oligopyridylamides bind to different domains of Aβ and affect distinct microscopic events in Aβ self-assembly. The study lays the foundations for a dual recognition strategy to simultaneously target different domains of Aβ for further improvement in antiamyloidogenic activity. The data demonstrate that one of the most effective oligopyridylamides forms a high affinity complex with Aβ, which sustains the compound's activity in cellular milieu. The oligopyridylamide was able to rescue cells when introduced 24 h after the incubation of Aβ. The rescue of Aβ toxicity is potentially a consequence of the colocalization of the oligopyridylamide with Aβ. The synthetic tools utilized here provide a straightforward strategic framework to identify a range of potent antagonists of Aβ-mediated toxic functions. This approach could be a powerful route to the design of candidate drugs for various amyloid diseases that have so far proven to be "untargetable".
The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
We have developed a novel approach for creating membrane-spanning protein-based pores. The construction principle is based on using well-defined, circular DNA nanostructures to arrange a precise number of pore-forming protein toxin monomers. We can thereby obtain, for the first time, protein pores with specifically set diameters. We demonstrate this principle by constructing artificial alpha-hemolysin (αHL) pores. The DNA/αHL hybrid nanopores composed of twelve, twenty or twenty-six monomers show stable insertions into lipid bilayers during electrical recordings, along with steady, pore size-dependent current levels. Our approach successfully advances the applicability of nanopores, in particular towards label-free studies of single molecules in large nanoscaled biological structures.
The stability of RNA increases as the charge density of the alkali metal cations increases. The molecular mechanism for this phenomenon remains elusive. To fill this gap, we performed all-atom molecular dynamics pulling simulations of HIV-1 trans-activation response RNA. We first established that the free energy landscape obtained in the simulations is in excellent agreement with the single-molecule optical tweezer experiments. The origin of the stronger stability in sodium compared to potassium is found to be due to the differences in the charge density–related binding modes. The smaller hydrated sodium ion preferentially binds to the highly charged phosphates that have high surface area. In contrast, the larger potassium ions interact with the major grooves. As a result, more cations condense around phosphate groups in the case of sodium ions, leading to the reduction of electrostatic repulsion. Because the proposed mechanism is generic, we predict that the same conclusions are valid for divalent alkaline earth metal cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.