Nanoparticles (NPs) have great potential for biological applications as typically they exhibit strongly sizedependent properties. Specifically, the interaction of NPs with phospholipid membranes is significantly relevant to nanomedicine and the related field of nanotoxicology. Therefore, the investigation of interactions of NPs with model membranes is not only fundamentally important but also practically valuable to understand interactions of NPs with more complex cell membranes. Here, we report on the interaction of anionic vesicles of different charge densities and cationic SiO 2 NPs, either covered by a bare surface functionalized with amino moieties (-NH 2 ) or covered by poly[2-(dimethylamino) ethyl methacrylate]. We studied the kinetics of binding of NPs to the vesicle surface by time-resolved scattering experiments. A key result of the study is that binding is favored in the presence of electrostatic attraction, but the polymer layer decreases the binding rate drastically.
Nanoemulsions (NEs) are metastable emulsions with droplet sizes between 20 and 100 nm and with a wide range of applications, for example, in polymerization, in pharmaceutical and cosmetic formulations, and as drug delivery systems. Even though they are not in thermodynamic equilibrium, they can be metastable over relatively long times and have the advantage that they can be formed easily by low energy input methods. In particular, the phase inversion concentration (PIC) method allows the formation of NEs by the dilution of a suitable mixture of oil and surfactants with water. In this paper, we investigate the kinetics of the oil exchange process of NEs formed by the PIC method by looking at the exchange of different hydrophobic oils and by employing contrast variation stopped flow small-angle neutron scattering. These experiments demonstrate that this exchange becomes substantially slower by increasing the chain length of the alkane. This indicates a mechanism where monomer exchange is relevant, which would indicate also that for aging one would expect Ostwald ripening to be the determining factor. Such investigations can be carried out in a unique fashion by means of neutron scattering, and the results have important implications for the optimization of NE formulations.
A new sample environment is introduced for the study of soft matter samples in electric fields using small-angle neutron scattering instruments. The sample environment is temperature controlled and features external electrodes, allowing standard quartz cuvettes to be used and conducting samples or samples containing ions to be investigated without the risk of electrochemical reactions occurring at the electrodes. For standard 12.5 mm quartz cuvettes, the maximum applied field is 8 kV/cm, and the applied field may be static or alternating (up to 10 kHz for 8 kV/cm and up to 60 kHz for 4 kV/cm). The electric fields within the sample are calculated and simulated under a number of different conditions, and the capabilities of the setup are demonstrated using a variety of liquid crystalline samples. Measurements were performed as a function of temperature and time spent in the electric field. Finally, the advantages, drawbacks, and potential optimization of the sample environment are discussed with reference to applications in the fields of complex soft matter, biology, and electrorheology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.