The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium-series dates obtained and subsequently analysed. Sea-level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age-depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 AE 50 yr BP; accretion rates average 5Á65 m kyr À1 . The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier-reef growth began 10 030 AE 50 yr BP and accretion rates average 6Á15 m kyr À1 . The underlying Pleistocene reef formed 116 900 AE 1100 yr BP, i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0Á05 to 0Á14 m kyr À1 . In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sealevel changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier-reef systems in Tahiti and Mayotte exhibit more differences than similarities.
Holocene fringing reef development around Bora Bora is controlled by variations in accommodation space (as a function of sea‐level and antecedent topography) and exposure to waves and currents. Subsidence ranged from 0 to 0·11 m kyr−1, and did not create significant accommodation space. A windward fringing reef started to grow 8·7 kyr bp, retrograded towards the coast over a Pleistocene fringing reef until ca 6·0 kyr bp, and then prograded towards the lagoon after sea‐level had reached its present level. The retrograding portion of the reef is dominated by corals, calcareous algae and microbialite frameworks; the prograding portion is largely detrital. The reef is up to 13·5 m thick and accreted vertically with an average rate of 3·12 m kyr−1. Lateral growth amounts to 13·3 m kyr−1. Reef corals are dominated by an inner Pocillopora assemblage and an outer Acropora assemblage. Both assemblages comprise thick crusts of coralline algae. Palaeobathymetry suggests deposition in 0 to 10 m depth. An underlying Pleistocene fringing reef formed during the sea‐level highstand of Marine Isotope Stage 5e, and is also characterized by the occurrence of corals, coralline algal crusts and microbialites. A previously investigated, leeward fringing reef started to form contemporaneously (8·78 kyr bp), but is thicker (up to 20 m) and solely prograded throughout the Holocene. A shallow Pocillopora assemblage and a deeper water Montipora assemblage were identified, but detrital facies dominate. At the Holocene reef base, only basalt was recovered. The Holocene windward–leeward differences are a consequence of less accommodation space on the eastern island side that eventually led to a more complex reef architecture. As a result of higher rates of exposure and flushing, the reef framework on the windward island side is more abundant and experienced stronger cementation. In the Pleistocene, the environmental conditions on the leeward island side were presumably unfavourable for fringing reef growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.