Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130 -132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme.Protein-tyrosine phosphatases (PTPs) 1 are key regulators of signal transduction processes (1, 2). The family of classical PTPs can be divided into two broad categories as intracellular and receptor-like PTPs covering a total of 17 subtypes (3). Receptor-like PTPs contain an extracellular domain, a single transmembrane domain, and one or two cytoplasmic PTP domains. Intracellular PTPs generally contain one PTP domain and an N-or C-terminal domain that targets the enzymes to specific subcellular localizations, as exemplified by the targeting of PTP1B to the endoplasmic reticulum (4).PTP1B and TC-PTP are two closely related intracellular enzymes. PTP1B was the first protein-tyrosine phosphatase to be identified and characterized (5, 6). Shortly after this landmark event, PTP1B was cloned from a placenta cDNA library (7), and TC-PTP was cloned from a peripheral human T cell cDNA library (8). Despite its name, TC-PTP is ubiquitously expressed (9). Alternative splicing gives rise to two forms of TC-PTP that differ in the C termini, a 45-kDa form that is targeted to the nucleus and a 48-kDa form that localizes to the endoplasmic reticulum via a hydrophobic C-terminal region (10). TC-PTP is tightly regulated during the cell cycle and seems to play an important role in mitogenesis (9). In a recent study, it was shown that cellular stress causes reversible cytoplasmic accumulation of the 45-kDa form of TC-PTP (i.e. the nuclear form) (11).Although they have a sequence identity of about 74% in the catalytic domains (see Fig. 1), TC-PTP and PTP1B clearly fulfill different biological functions, as has been demonstrated in knock-out mice. Thus, although PTP1B knock-out mice show increased insulin sensitivity and resistance to diet-induced obesity and are viable with a normal life span (12, 13), TC-PTP knock-out mice die at 3-5 weeks of age (14).In accordance with these in vivo observations, substrate trapping experiment...
Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 A apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active-site pocket of the enzyme; hence, the active site is highly solvated in the apo state. Three of the water molecules are located at positions that approximately correspond to the positions of the phosphate O atoms of the natural substrate phosphotyrosine and form a similar network of hydrogen bonds. The active-site WPD-loop was found to be in the closed conformation, in contrast to previous observations of wild-type PTPs in the apo state, in which the WPD-loop is open. The closed conformation is stabilized by a network of hydrogen bonds. These results provide new insights into and understanding of the active site of PTP1B and form a novel basis for structure-based inhibitor design.
Protein-tyrosine phosphatases (PTPs) are considered important therapeutic targets because of their pivotal role as regulators of signal transduction and thus their implication in several human diseases such as diabetes, cancer, and autoimmunity. In particular, PTP1B has been the focus of many academic and industrial laboratories because it was found to be an important negative regulator of insulin and leptin signaling, and hence a potential therapeutic target in diabetes and obesity. As a result, significant progress has been achieved in the design of highly selective and potent PTP1B inhibitors. In contrast, little attention has been given to other potential drug targets within the PTP family. Guided by x-ray crystallography, molecular modeling, and enzyme kinetic analyses with wild type and mutant PTPs, we describe the development of a general, low molecular weight, non-peptide, non-phosphorus PTP inhibitor into an inhibitor that displays more than 100-fold selectivity for PTP over PTP1B. Of note, our structure-based design principles, which are based on extensive bioinformatics analyses of the PTP family, are general in nature. Therefore, we anticipate that this strategy, here applied to PTP, in principle can be used in the design and development of selective inhibitors of many, if not most PTPs.Protein-tyrosine phosphatases (PTPs) 1 are key regulators of signal transduction. Together with the counteracting proteintyrosine kinases, they control the phosphorylation status of many important proteins and are thereby critically involved in the regulation of fundamental cellular processes such as metabolism, cell growth, and differentiation. Aberrant tyrosine phosphorylation levels have been associated with the development of cancer, autoimmunity, and diabetes, thus indicating that PTPs might play important etiological and pathogenic roles in these diseases (1-5). In particular, two elegant studies with PTP1B knockout mice, in which increased insulin sensitivity and resistance to diet-induced obesity were observed (6, 7), indicated that PTP1B is an important negative regulator of insulin and leptin action, suggesting that inhibition of this enzyme could augment and prolong insulin and leptin signaling (8, 9). As a result, a number of academic and industrial laboratories have devoted considerable efforts toward the development of selective inhibitors of PTP1B for treatment of type 2 diabetes and obesity resulting in very significant progress (reviewed in Refs. 10 -12). The field has advanced significantly by a number of x-ray crystallographic structures (reviewed in Refs. 3, 13, and 14), and several research groups have successfully used structure-based designs to synthesize active site-directed, selective PTP1B inhibitors (15-20). Most important, two groups have demonstrated recently that it is possible to develop compounds that are selective for PTP1B over the highly homologous T cell-PTP (21, 22), thereby lending support to the view that selective inhibitors, which discriminate between even closely related PTP...
Aggregation can be a major challenge in the development of antibody-based pharmaceuticals as it can compromise the quality of the product during bioprocessing, formulation, and drug administration. To avoid aggregation, developability assessment is often run in parallel with functional optimization in the early screening phases to flag and deselect problematic molecules. As developability assessment can be demanding with regard to time and resources, there is a high focus on the development of molecule design strategies for engineering molecules with a high developability potential. Previously, Dudgeon et al. [(2012) Proc. Natl. Acad. Sci. U. S. A. 109, 10879–10884] demonstrated how Asp substitutions at specific positions in human variable domains and single-chain variable fragments could decrease the aggregation propensity. Here, we have investigated whether these Asp substitutions would improve the developability potential of a murine antigen binding fragment (Fab). A full combinatorial library consisting of 393 Fab variants with single, double, and triple Asp substitutions was first screened in silico with Rosetta; thereafter, 26 variants with the highest predicted thermodynamic stability were selected for production. All variants were subjected to a set of developability studies. Interestingly, most variants had thermodynamic stability on par with or improved relative to that of the wild type. Twenty-five of the variants exhibited improved nonspecificity. Half of the variants exhibited improved aggregation resistance. Strikingly, while we observed remarkable improvement in the developability potential, the Asp substitutions had no substantial effect on the antigenic binding affinity. Altogether, by combining the insertion of negative charges and the in silico screen based on computational models, we were able to improve the developability of the Fab rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.