Previous studies have established that chlorella viruses encode K؉ channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs ؉ to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused rapid membrane depolarization of similar amplitudes, but with different kinetics. Depolarization was fastest after infection with virus SC-1A (half time [t 1/2 ], about 9 min) and slowest with virus NY-2A (t 1/2 , about 12 min). Cs ؉ inhibited membrane depolarization only in viruses that encode a Cs ؉ -sensitive K ؉ channel. Collectively, the results indicate that membrane depolarization is an early event in chlorella virus-host interactions and that it is correlated with viral-channel activity. This suggestion was supported by investigations of thin sections of Chlorella cells, which show that channel blockers inhibit virus DNA release into the host cell. Together, the data indicate that the channel is probably packaged in the virion, presumably in its internal membrane. We hypothesize that fusion of the virus internal membrane with the host plasma membrane results in an increase in K ؉ conductance and membrane depolarization; this depolarization lowers the energy barrier for DNA release into the host.
Previous experiments established that when the unicellular green alga Chlorella NC64A is inoculated with two viruses, usually only one virus replicates in a single cell. That is, the viruses mutually exclude one another. In the current study, we explore the possibility that virus-induced host membrane depolarization, at least partially caused by a virus-encoded K+ channel (Kcv), is involved in this mutual exclusion. Two chlorella viruses, PBCV-1 and NY-2A, were chosen for the study because (i) they can be distinguished by real-time PCR and (ii) they exhibit differential sensitivity to Cs+, a well-known K+ channel blocker. PBCV-1-induced host membrane depolarization, Kcv channel activity and plaque formation are only slightly affected by Cs+, whereas all three NY-2A-induced events are strongly inhibited by Cs+. The addition of one virus 5–15 min before the other results primarily in replication of the first virus. However, if virus NY-2A-induced membrane depolarization of the host is blocked by Cs+, PBCV-1 is not excluded. We conclude that virus-induced membrane depolarization is at least partially responsible for the exclusion phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.