Our current environment is characterized by the omnipresence of food cues. The taste and smell of real foods—but also graphical depictions of appetizing foods—can guide our eating behavior, for example, by eliciting food craving and anticipatory cephalic phase responses. To facilitate research into this so-called cue reactivity, several groups have compiled standardized food image sets. Yet, selecting the best subset of images for a specific research question can be difficult as images and image sets vary along several dimensions. In the present report, we review the strengths and weaknesses of popular food image sets to guide researchers during stimulus selection. Furthermore, we present a recent extension of our previously published database food-pics, which comprises an additional 328 food images from different countries to increase cross-cultural applicability. This food-pics_extended stimulus database, thus, encompasses and replaces food-pics. Normative data from a predominantly German-speaking sample are again presented as well as updated calculations of image characteristics.
Strong implicit responses to food have evolved to avoid energy depletion but contribute to overeating in today's affluent environments. The Approach-Avoidance Task (AAT) supposedly assesses implicit biases in response to food stimuli: Participants push pictures on a monitor "away" or pull them "near" with a joystick that controls a corresponding image zoom. One version of the task couples movement direction with image content-independent features, for example, pulling blue-framed images and pushing green-framed images regardless of content ('irrelevant feature version'). However, participants might selectively attend to this feature and ignore image content and, thus, such a task setup might underestimate existing biases. The present study tested this attention account by comparing two irrelevant feature versions of the task with either a more peripheral (image frame color: green vs. blue) or central (small circle vs. cross overlaid over the image content) image feature as response instruction to a 'relevant feature version', in which participants responded to the image content, thus making it impossible to ignore that content. Images of chocolate-containing foods and of objects were used, and several trait and state measures were acquired to validate the obtained biases. Results revealed a robust approach bias towards food only in the relevant feature condition. Interestingly, a positive correlation with state chocolate craving during the task was found when all three conditions were combined, indicative of criterion validity of all three versions. However, no correlations were found with trait chocolate craving. Results provide a strong case for the relevant feature version of the AAT for bias measurement. They also point to several methodological avenues for future research around selective attention in the irrelevant versions and task validity regarding trait vs. state variables.
Most tasks for measuring automatic approach-avoidance tendencies do not resemble naturalistic approach-avoidance behaviors. Therefore, we developed a paradigm for the assessment of approach-avoidance tendencies towards palatable food, which is based on arm and hand movements on a touchscreen, thereby mimicking real-life grasping or warding movements. In Study 1 (n = 85), an approach bias towards chocolate-containing foods was found when participants reached towards the stimuli, but not when these stimuli had to be moved on the touchscreen. This approach bias towards food observed in grab movements was replicated in Study 2 (n = 60) and Study 3 (n = 94). Adding task features to disambiguate distance change through either corresponding image zooming (Study 2) or emphasized self-reference (Study 3) did not moderate this effect. Associations between approach bias scores and trait and state chocolate craving were inconsistent across studies. Future studies need to examine whether touchscreen-based approach-avoidance tasks reveal biases towards other stimuli in the appetitive or aversive valence domain and relate to relevant interindividual difference variables.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.