The integration of polymer materials with self-healing features into advanced lithium batteries is a promising and attractive approach to mitigate degradation and, thus, improve the performance and reliability of batteries. Polymeric materials with an ability to autonomously repair themselves after damage may compensate for the mechanical rupture of an electrolyte, prevent the cracking and pulverization of electrodes or stabilize a solid electrolyte interface (SEI), thus prolonging the cycling lifetime of a battery while simultaneously tackling financial and safety issues. This paper comprehensively reviews various categories of self-healing polymer materials for application as electrolytes and adaptive coatings for electrodes in lithium-ion (LIBs) and lithium metal batteries (LMBs). We discuss the opportunities and current challenges in the development of self-healable polymeric materials for lithium batteries in terms of their synthesis, characterization and underlying self-healing mechanism, as well as performance, validation and optimization.
Within the era of battery technology, the urgent demand for improved and safer electrolytes is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible addition–fragmentation chain-transfer (RAFT) polymerization was employed using S,S-dibenzyl trithiocarbonate as the chain transfer agent to produce precise POILs with a defined amount of UPy and POIL-moieties. Kinetic studies revealed an excellent control over molecular weight and polydispersity in all polymerizations, with a preferable incorporation of UPy monomers in the copolymerizations together with the ionic monomers. Thermogravimetric analysis proved an excellent thermal stability of the polymeric ionic liquids up to 360 °C. By combining the results from differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and rheology, a decoupled conductivity of the POILs from glass transition was revealed. While the molecular weight was found to exert the main influence on ionic conductivity, the ultimate strength and the self-healing efficiency (of up to 88 %) were also affected, as quantified by tensile tests for both pristine and self-healed samples, evidencing a rational design of self-healing electrolytes bearing both hydrogen bonding moieties and low-molecular-weight polymeric ionic liquids.
We here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO2-based nanofillers. PEG was successfully end group modified yielding telechelic PEG containing either ureidopyrimidone (UPy) or barbiturate moieties, capable to form supramolecular networks via hydrogen bonds, thus introducing self-healing to the electrolyte system. Silica nanoparticles (NPs) were used as a filler for further adjustment of mechanical properties of the electrolyte to enable 3D-printability. The surface functionalization of the NPs with either ionic liquid (IL) or hydrophobic alkyl chains is expected to lead to an improved dispersion of the NPs within the polymer matrix. Composites with different content of NPs (5%, 10%, 15%) and LiTFSI salt (EO/Li+ = 5, 10, 20) were analyzed via rheology for a better understanding of 3D printability, and via Broadband Dielectric Spectroscopy (BDS) for checking their ionic conductivity. The composite electrolyte PEG 1500 UPy2/LiTFSI (EO:Li 5:1) mixed with 15% NP-IL was successfully 3D printed, revealing its suitability for application as printable composite electrolytes.
The formation and design of a hierarchically nanostructured poly(isobutylene)-based ionic liquid (PIB-ILs) is reported, displaying assembly into classical multiplets and an additional ordering of the aromatic counteranions. Three PIB-ILs (Mn = 3600 and 8600 g mol(-1) ), bearing imidazolium (1a), N-methylpyrrolidinium (1b), and triethylammonium cations (1c) together with the aromatic 2-(methylthio)benzoate anion are prepared via a combination of living carbocationic polymerization, "click" reactions and subsequent anion metathesis. The morphology of the novel PIB-ILs as well as its temperature-dependent behavior has been studied via small angle X-ray scattering, displaying two different transition temperatures: one originating from ordering of micelles within a cylinder, and the second from cylinder-cylinder arrangement. Furthermore, the incorporation of an aromatic, rigid, and bulky 2-(methylthio)benzoate anion into the PIB-ILs effects the formation of an internal assembly consisting of stacked cylindrical structures, composed from the mesoscale ordering of ionic "multiplets" characteristic for classical ionomers and from the typical distance of the cylinders themselves.
ZusammenfassungWährend noch vor wenigen Jahren selbstheilende Materialien eher als Konzept denn als brauchbare Alternative zu bestehenden Materialien angesehen wurden, hat sich dies inzwischen geändert. Besonders wenn es um eher geringe Materialmengen in Produkten geht (Beschichtungen, Elektrolyte, elektronische Bauteile) ist der Einsatz von Selbstheilung durchaus zielführend und auch wirtschaftlich ansprechend. Auch bei Massenanwendungen wie im Automobilbereich werden solche Konzepte bereits umgesetzt. Insgesamt ist aber immer eine grundlegende technologische Anpassung von Prozessen und auch Materialien nötig, wenn man neue Wege geht. Es ist erkennbar, dass die Industrie – sicher auch im Spannungsfeld von Umweltaspekten – bereit ist, diesen Weg zu gehen und selbstheilende, neue Materialien und Polymere breitflächig einzusetzen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.