Basic membrane protein A (BmpA) is a potential carrier protein for surface display of the IgG-binding domain on Lactococcus lactis. We have shown that it can increase the adhesion of bacteria to the intestinal cell model by 1.3-fold and have improved BmpA-based surface display by engineering the BmpA molecule. The bulk of the BmpA molecule was shown to be important in surface display; however, limited shortening (variant Bmp1) resulted in a large increase in the surface display ability. The closeness of the N- and the C-terminals in the Bmp1 model and the inefficiency of the spacer suggest that the distance of the passenger from the membrane is not of prime importance in surface display.
Eleven strains of Lactobacillus collected in the Culture Collection of Dairy Microorganisms (CCDM) were evaluated for selected probiotic properties such as survival in gastrointestinal fluids, antimicrobial activity, and competition with non-toxigenic Escherichia coli O157:H7 for adhesion on Caco-2 cells. The viable count of lactobacilli was reduced during 3-h incubation in gastric fluid followed by 3-h incubation in intestinal fluid. All strains showed antimicrobial activity and the three most effective strains inhibited the growth of at least 16 indicator strains. Antimicrobial metabolites of seven strains active against Lactobacillus and Clostridium indicator strains were found to be sensitive to proteinase K and trypsin, which indicates their proteinaceous nature. The degree of competitive inhibition of non-toxigenic E. coli O157:H7 adhesion on the surface of Caco-2 cells was strain-dependent. A significant decrease (P < 0.05) in the number of non-toxigenic E. coli O157:H7 adhering to Caco-2 cells was observed with all lactobacilli. Three strains were selected for additional studies of antimicrobial activity, i.e., Lactobacillus gasseri CCDM 215, Lactobacillus acidophilus CCDM 149, and Lactobacillus helveticus CCDM 82.
Cell spreading capability and cell proliferation are the major processes in wound healing of injured epithelia as well as in tumour progression. The effect of low-density lipoprotein (LDL) particles as a major extracellular source of cholesterol was evaluated in the re-epithelisation assay of in vitro induced injury. We selected two noncancer cell lines with different dependence on LDL concentrations, the kidney epithelial cells (MDCK) with higher dependence and keratinocytes (HaCaT) with lower dependence on LDL, and three cancer cell lines originating from epithelial cells: A549 (alveolar), CaCo-2 (intestinal) and RT4 (urothelial). All cells were incubated in a control medium, in an LDL-enriched medium or in an LDL-deficient medium. The LDL-enriched medium stimulated cell spreading of MDCK cells which, together with increased proliferation of these cells, resulted in an enhanced re-epithelisation of in vitro induced injury. LDL deficiency caused lower cell spreading which resulted in a decreased re-epithelisation despite the higher proliferation of MDCK cells in this medium. The re-epithelisation of keratinocytes (HaCaT) was not affected by altered LDL concentrations. In cancer cell lines A549, CaCo-2 and RT4, wide heterogeneity regarding cell proliferation and spreading capability was observed after treatment with different LDL concentrations. LDL had no influence on actin filament and tight junction distribution in any of the tested cell lines. The cholesterol content of all cell types, except for CaCo-2 cells, proved to be independent of the LDL level. Further research of the beneficial effects of LDL is needed to prove LDL as a safe enhancer of epithelial wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.