Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, nineteen associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biologic pathways.
Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.
Analysis of a GWA study followed by in silico and wet-lab replication steps identified the KIAA1462 gene, encoding a yet uncharacterized protein, on chromosome 10p11.23 with genome-wide significant association for CAD/MI. Further studies are needed to characterize the functional role of this locus in the aetiology of these diseases.
The centrosome/basal body protein ODF2/Cenexin is necessary for the formation of the primary cilium. Primary cilia are essential organelles that sense and transduce environmental signals. Primary cilia are therefore critical for embryonic and postnatal development as well as for tissue homeostasis in adulthood. Impaired function of primary cilia causes severe human diseases. ODF2 deficiency prevents formation of the primary cilium and is embryonically lethal. To explore the regulation of primary cilia formation we analyzed the promoter region of Odf2 and its transcriptional activity. In cycling cells, Odf2 transcription is depressed but becomes up-regulated in quiescent cells. Low transcriptional activity is mediated by sequences located upstream from the basal promoter, and neither transcription factors with predicted binding sites in the Odf2 promoter nor Rfx3 or Foxj, which are known to control ciliary gene expression, could activate Odf2 transcription. However, co-expression of either C/EBPα, c-Jun or c-Jun and its regulator MEKK1 enhances Odf2 transcription in cycling cells. Our results provide the first analysis of transcriptional regulation of a ciliary gene. Furthermore, we suggest that transcription of even more ciliary genes is largely inhibited in cycling cells but could be activated by cell cycle arrest and by the stress signaling JNK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.