Detailed ground-penetrating radar (GPR) surveys at 50 and 200 MHz on Hansbreen, a polythermal glacier in southern Svalbard, are presented and interpreted. Comparison of the variations in character of the radar reflections with borehole thermometry and water levels in moulins suggests that GPR can be used to study the hydrothermal properties of the glacier. The high resolution of the GPR data shows that the hydrothermal structure of the glacier is highly variable both along the centre line and on transverse profiles. Water contents for many places and depths within the glacier were calculated by estimating radar-wave velocities to point reflectors. We find typical water contents of 1-2% for the temperate ice, but wetter ice associated with surface crevassing and moulins (typically 4% water content). There is evidence that wet ice sometimes overlays drier ice. The hydrothermal structure is thus shown to be very complex. Temperature gradients in the cold ice indicate freezing rates of temperate ice below cold ice of 0.1-0.5 ma-1, while isolated point reflectors within the cold ice indicate large water-filled bodies that are probably related to the regular drainage structure of the glacier.
A 50 MHz ground-penetrating radar was used to detect horizontal layers in the snowpack along a longitudinal profile on Nordenskjöldbreen, a Svalbard glacier. The profile passed two shallow and one deep ice-core sites. Two internal radar reflection layers were dated using parameters measured in the deep core. Radar travel times were converted to water equivalent, yielding snow-accumulation rates along the profile for three time periods: 1986–99, 1963–99 and 1963–86. The results show 40–60% spatial variability in snow accumulation over short distances along the profile. The average annual accumulation rate for 1986–99 was found to be about 12% higher than for the period 1963–86, which indicates increased accumulation in the late 1980s and 1990s.
High-resolution ground-penetrating radar surveys at 50 MHz on the polythermal glaciers Hornbreen, Hambergbreen and several surrounding glaciers in southern Spitsbergen, Svalbard, are presented and interpreted. Accurate positioning was obtained using differential global positioning system (DGPS). Digital elevation models (DEMs) of the bedrock and surface were constructed. Comparison of DGPS data and surface DEMs with data from the topographic mappings from 1936 oblique stereoscopic aerial photographs and from Mission Russe in 1899–1901 shows that the Hornbreen and Hambergbreen surfaces are about 60–100 m thinner today in the upper part than at the beginning of the 20th century. Hornbreen has retreated by 13.5 km from the central part of the front, and Hambergbreen by 16 km. All the fronts of the nearby east-coast glaciers in this area have retreated. The bedrock DEM shows that the Hornbreen and Hambergbreen beds lie at –25 to 25 m a.s.l. The combination of sub-sea-level fronts and increasing steepness of the glaciers suggests that the low-lying glaciated valley filled by Hornbreen and Hambergbreen may become a partially inundated ice-free isthmus within perhaps 100 years.
To improve our understanding of Svalbard‐type polythermal glacier drainage, hydraulic geometry models of the subglacial hydrology of two contrasting glaciers in Svalbard have been constructed. The models are tested against a uniquely long and rich set of field observations spanning 45 years. Digital elevation models (DEMs) were constructed from bedrock data measured with ground penetrating radar and surface data of two medium‐sized polythermal glaciers, Hansbreen and Werenskioldbreen, in south‐west Spitsbergen. Hansbreen has a low angle bed with over‐deepenings and a calving front, while Werenskioldbreen has steeper bed and terminates on land. Together they are representative of many Svalbard glaciers. The DEMs were used to derive maps of hydraulic potential and subglacial drainage networks. Validation of the models was done using field observations including location mapping and speleological exploration of active moulins, positions of main river outflows, dyetracing and water chemistry studies, and observations of water pressure inside moulins. Results suggest that the water pressure is generally close to ice overburden pressure but varies greatly depending on local conditions such as bed location, the thickness of cold ice layer, the thickness of the glacier and seasonal changes in meltwater input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.