Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
SummaryArabidopsis and tomato plants mutated in the F-box protein COI1 mediating jasmonate (JA) responses are more susceptible to herbivores in laboratory trials, but the exact mechanisms of COI1-mediated resistance are not known. We silenced COI1 by transformation with an inverted repeat construct (ir-coi1) in Nicotiana attenuata, a plant the direct and indirect defenses of which against various herbivores have been well studied. ir-coi1 plants are male sterile and impaired in JA-elicited direct [nicotine, caffeoylputrescine and trypsin proteinase inhibitor (TPI) activity] and indirect (cis-a-bergamotene emission) defense responses; responses not elicited by JA treatment (ethylene production and flower TPI activity) were unaffected. Larvae of Manduca sexta, a common herbivore of N. attenuata, gained three times more mass feeding on ir-coi1 than on wild-type (WT) plants in glasshouse experiments. By regularly moving caterpillars to unattacked leaves of the same plant, we demonstrate that larvae on WT plants can grow and consume leaves as fast as those on ir-coi1 plants, a result that underscores the role of COI1 in mediating locally induced resistance in attacked leaves, and the importance of herbivore movement in avoiding the induced defenses of a plant. When transplanted into native habitats in the Great Basin Desert, ir-coi1 plants suffer greatly from damage by the local herbivore community, which includes herbivores not commonly found on N. attenuata WT plants. Choice assays with field-grown plants confirmed the increased attractiveness of ir-coi1 plants for both common and unusual herbivores. We conclude that NaCOI1 is essential for induced resistance in N. attenuata, and that ir-coi1 plants highlight the benefits of herbivore movement for avoiding induced defenses.
Typically, F 1 -hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B733Mo17 and Mo173B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%-55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids,~10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids,~14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.