The obvious benefits of employing prebiotics as functional components in many foods and feed products have resulted in higher demand for their industrial production, necessitating the development of more efficient and cost-effective manufacturing procedures. As a result, the goal of this study was to synthesize confirmed prebiotics, namely fructo-oligosaccharides (FOS), using sucrose as a substrate, since it allows the synthesis of oligosaccharides with lower polymerization degree, and consequently, a more pronounced prebiotic effect. Due to its availability, low market price, and high stability under industrial conditions, a commercial enzymatic mixture, Pectinex® Ultra SP-L, is used as a source of enzyme - fructosyltransferase (FTase). By varying key experimental conditions such as pH, temperature, enzyme and substrate concentrations, as well as the duration of the process, the composition of the FOS mixture can be adjusted to fit the potential applications. It was found that by performing the reaction in an aqueous medium (pH 7), at a temperature of 50 °C using an enzyme concentration of 1% (v/v) and any sucrose concentration in the range of 200-700 g/L, it was possible to achieve maximum FOS yield of 60% of total carbohydrates within a 24 h. The produced syrup with a high content of FOS can be further used as an adequate food additive, or else, developed processes should be used for the transformation of various food products (such as juices, jams, fillings, candies, cakes, etc.) in which sucrose dominates, creating products with lower caloric and higher functional value.
Objective: Recently, prebiotics are attracting plenty of attention in the field of skin care, since it is found that they are able to support the balance of beneficial and harmful microorganisms on the skin, and accordingly prevent several skin conditions associated with microbial imbalance. Topical application of prebiotics, although insufficiently investigated, holds great promise in improving skin health. The purpose of this research was to determine the prebiotic potential of galacto-oligosaccharides (GOS) for skin microbiota and suitability for incorporation in different topical formulations, and finally, provide insights into their diffusion properties. Methods:The prebiotic effect of GOS was evaluated through the influence on the growth of Staphylococcus epidermidis and Staphylococcus aureus, the most common resident and pathogenic bacterium of the skin microbiota, respectively. Also, with the future use of GOS in cosmetic products in mind, the diffusion of GOS molecules from two different topical formulations, hydrogel and oil-inwater (O/W) gel emulsion, was monitored employing Franz diffusion cell and two systems-with cellulose acetate membrane and transdermal diffusion test model, Strat-M® membrane. Course of fermentation and the amount of diffused GOS molecules were monitored using high-performance liquid chromatography (HPLC). Results:The in vitro results revealed that GOS at a concentration of 5% (w/v) has a pronounced stimulatory effect on S. epidermidis, while simultaneously showing an inhibitory effect on S. aureus, both in nutrient broth and cosmetic formulations. GOS trisaccharide and tetrasaccharide diffusion coefficients from O/W gel emulsion were calculated to be 5.61•10 −6 cm 2 s −1 and 1.41•10 −8 cm 2 s −1 , respectively. The diffusion coefficient of GOS trisaccharides from hydrogel was 3.22•10 −6 cm 2 s −1 , while it was not determined for tetrasaccharides due to low diffused concentration. Transdermal diffusion tests revealed that GOS incorporated in two formulations stays at the surface of the skin even after 24 h. Conclusion:When applied in adequate concentration, GOS has the potential to be used as a skin prebiotic. Novel GOS enriched formulations, Aristoflex® PREBIOTIC EFFECT OF GALACTO-OLIGOSACCHARIDES ON THE SKIN MICROBIOTA AND DETERMINATION OF THEIR DIFFUSION PROPERTIES Conclusion: Lorsqu'il est appliqué à une concentration adéquate, le GOS a le potentiel d'être utilisé comme prébiotique cutané. De nouvelles formulations enrichies en GOS, l'hydrogel à base d'Aristoflex® AVC et l'émulsion de gel H/E à base d'Heliogel™, ont permis une diffusion et une délivrance efficaces des molécules GOS prébiotiques à la surface de la peau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.