OBJECTIVECarotid intima-media thickness (CIMT) is a marker of subclinical organ damage and predicts cardiovascular disease (CVD) events in the general population. It has also been associated with vascular risk in people with diabetes. However, the association of CIMT change in repeated examinations with subsequent CVD events is uncertain, and its use as a surrogate end point in clinical trials is controversial. We aimed at determining the relation of CIMT change to CVD events in people with diabetes.RESEARCH DESIGN AND METHODSIn a comprehensive meta-analysis of individual participant data, we collated data from 3,902 adults (age 33–92 years) with type 2 diabetes from 21 population-based cohorts. We calculated the hazard ratio (HR) per standard deviation (SD) difference in mean common carotid artery intima-media thickness (CCA-IMT) or in CCA-IMT progression, both calculated from two examinations on average 3.6 years apart, for each cohort, and combined the estimates with random-effects meta-analysis.RESULTSAverage mean CCA-IMT ranged from 0.72 to 0.97 mm across cohorts in people with diabetes. The HR of CVD events was 1.22 (95% CI 1.12–1.33) per SD difference in mean CCA-IMT, after adjustment for age, sex, and cardiometabolic risk factors. Average mean CCA-IMT progression in people with diabetes ranged between −0.09 and 0.04 mm/year. The HR per SD difference in mean CCA-IMT progression was 0.99 (0.91–1.08).CONCLUSIONSDespite reproducing the association between CIMT level and vascular risk in subjects with diabetes, we did not find an association between CIMT change and vascular risk. These results do not support the use of CIMT progression as a surrogate end point in clinical trials in people with diabetes.
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
BackgroundFor an individual participant data (IPD) meta-analysis, multiple datasets must be transformed in a consistent format, e.g. using uniform variable names. When large numbers of datasets have to be processed, this can be a time-consuming and error-prone task. Automated or semi-automated identification of variables can help to reduce the workload and improve the data quality. For semi-automation high sensitivity in the recognition of matching variables is particularly important, because it allows creating software which for a target variable presents a choice of source variables, from which a user can choose the matching one, with only low risk of having missed a correct source variable.MethodsFor each variable in a set of target variables, a number of simple rules were manually created. With logic regression, an optimal Boolean combination of these rules was searched for every target variable, using a random subset of a large database of epidemiological and clinical cohort data (construction subset). In a second subset of this database (validation subset), this optimal combination rules were validated.ResultsIn the construction sample, 41 target variables were allocated on average with a positive predictive value (PPV) of 34%, and a negative predictive value (NPV) of 95%. In the validation sample, PPV was 33%, whereas NPV remained at 94%. In the construction sample, PPV was 50% or less in 63% of all variables, in the validation sample in 71% of all variables.ConclusionsWe demonstrated that the application of logic regression in a complex data management task in large epidemiological IPD meta-analyses is feasible. However, the performance of the algorithm is poor, which may require backup strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12911-017-0429-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.