The majority of transplants are derived from donors who suffered from brain injury. There is evidence that brain death causes inflammatory changes in the donor. To define the impact of brain death, we evaluated the gene expression of cytokines in human brain dead and ideal living donors and compared these data to organ function following transplantation.Hepatic tissues from brain dead (n = 32) and living donors (n = 26) were collected at the time of donor laparotomy. Additional biopsies were performed before organ preservation, at the time of transplantation and one hour after reperfusion. Cytokines were assessed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and cytometric bead array. Additionally, immunohistological analysis of tissue specimens was performed. Inflammatory cytokines including IL-6, IL-10, TNF-a , TGF-b and MIP-1a were significantly higher in brain dead donors immediately after laparotomy compared to living donors. Cellular infiltrates significantly increased in parallel to the soluble cytokines IL-6 and IL-10. Enhanced immune activation in brain dead donors was reflected by a deteriorated I/R injury proven by elevated alanin-aminotransferase (ALT), aspartat-amino-transferase (AST) and bilirubin levels, increased rates of acute rejection and primary nonfunction. Based on our clinical data, we demonstrate that brain death and the events that †Authors contributed equally to this manuscript.precede it are associated with a significant upregulation of inflammatory cytokines and lead to a worse ischemia/reperfusion injury after transplantation.
Our present study verifies the protective effect of methylprednisolone treatment in deceased donor liver transplantation, suggesting it as a potential therapeutical approach.
Today, the major problem in organ transplantation is not acute graft rejection but chronic graft deterioration. In addition to alloantigen-specific events, alloantigen independent factors like donor age, previous diseases, consequences of brain death, and perioperative events of ischemia/reperfusion injury have a major impact on long-term graft function. The induction of the stress protein heme oxygenase-1 (HO-1) protects cells from injury and apoptosis. Here, we tested the protective effects of HO-1 induction in a clinically relevant kidney transplant model. Induction of HO-1 expression following cobalt-protoporphyrin (CoPP) treatment in organ donors prolonged graft survival and long-term function remarkably following extended periods of ischemia. Positive effects were observed with both optimal and marginal grafts from old donor animals. Structural changes characteristic for chronic rejection, as well as graft infiltration by monocytes/macrophages and CD8+ T cells, were substantially reduced following HO-1 induction. Up-regulation of HO-1 expression before organ transplantation was also associated with reduced levels for tumor necrosis factor (TNF)-alpha mRNA, increased levels for interferon (IFN)-gamma, and bcl-x, and insignificant differences for CD25, interleukin (IL)-2, IL-4, IL-6, and IL-10 mRNA levels. The significant improvement of long-term graft function following induction of HO-1 expression in donor organs suggests that this strategy may be a novel clinical treatment option with particular relevance for transplantation of marginal organs.
One approach of regenerative medicine to generate functional hepatic tissue in vitro is decellularization and recellularization, and several protocols for the decellularization of livers of different species have been published. This appears to be the first report on rat liver decellularization by perfusion under oscillating pressure conditions, intending to optimize microperfusion and minimize damage to the ECM. Four decellularization protocols were compared: perfusion via the portal vein (PV) or the hepatic artery (HA), with (+P) or without (-P) oscillating pressure conditions. All rat livers (n = 24) were perfused with 1% Triton X-100 and 1% sodium dodecyl sulphate, each for 90 min with a perfusion rate of 5 ml/min. Perfusion decellularization was observed macroscopically and the decellularized liver matrices were analysed by histology and biochemical analyses (e.g. levels of DNA, glycosaminoglycans and hepatocyte growth factor). Livers decellularized via the hepatic artery and under oscillating pressure showed a more homogeneous decellularization and less remaining DNA, compared with the livers of the other experimental groups. The novel decellularization method described is effective, quick (3 h) and gentle to the extracellular matrix and thus represents an improvement of existing methodology. Copyright © 2014 John Wiley & Sons, Ltd.
Decellularization of pancreata and repopulation of these non-immunogenic matrices with islets and endothelial cells could provide transplantable, endocrine Neo- Pancreata. In this study, rat pancreata were perfusion decellularized and repopulated with intact islets, comparing three perfusion routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively removed all cellular components but conserved the pancreas specific extracellular matrix. Digital subtraction angiography of the matrices showed a conserved integrity of the decellularized vascular system but a contrast emersion into the parenchyma via the decellularized pancreatic duct. Islets infused via the pancreatic duct leaked from the ductular system into the peri-ductular decellularized space despite their magnitude. TUNEL staining and Glucose stimulated insulin secretion revealed that islets were viable and functional after the process. We present the first available protocol for perfusion decellularization of rat pancreata via three different perfusion routes. Furthermore, we provide first proof-of-concept for the repopulation of the decellularized rat pancreata with functional islets of Langerhans. The presented technique can serve as a bioengineering platform to generate implantable and functional endocrine Neo-Pancreata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.