Several mechanisms for biological invasions have been proposed, yet to date there is no common framework that can broadly explain patterns of invasion success among ecosystems with different resource availabilities. Ecological stoichiometry (ES) is the study of the balance of energy and elements in ecological interactions. This framework uses a multi‐nutrient approach to mass‐balance models, linking the biochemical composition of organisms to their growth and reproduction, which consequently influences ecosystem structure and functioning. We proposed a conceptual model that integrates hypotheses of biological invasions within a framework structured by fundamental principles of ES. We then performed meta‐analyses to compare the growth and production performances of native and invasive organisms under low‐ and high‐nutrient conditions in terrestrial and aquatic ecosystems. Growth and production rates of invasive organisms (plants and invertebrates) under both low‐ and high‐nutrient availability were generally larger than those of natives. Nevertheless, native plants outperformed invasives in aquatic ecosystems under low‐nutrient conditions. We suggest several distinct stoichiometry‐based mechanisms to explain invasion success in low‐ versus high‐nutrient conditions; low‐nutrient conditions: higher resource‐use efficiency (RUE; C:nutrient ratios), threshold elemental ratios (TERs), and trait plasticity (e.g. ability of an organism to change its nutrient requirements in response to varying nutrient environmental supply); high‐nutrient conditions: higher growth rates and reproductive output related to lower tissue C:nutrient ratios, and increased trait plasticity. Interactions of mechanisms may also yield synergistic effects, whereby nutrient enrichment and enemy release have a disproportionate effect on invasion success. To that end, ES provides a framework that can help explain how chemical elements and energy constrain key physiological and ecological processes, which can ultimately determine the success of invasive organisms.
In the Baltic Sea, increased dominance of ephemeral and bloom-forming algae is presently attributed to increased nutrient loads. Simultaneously, coastal predatory fish are in strong decline. Using field data from nine areas covering a 700-km coastline, we examined whether formation of macroalgal blooms could be linked to the composition of the fish community. We then tested whether predator or nutrient availability could explain the field patterns in two small-scale field experiments, by comparing joint effects on algal net production from nutrient enrichment with agricultural fertilizer and exclusion of larger predatory fish with cages. We also manipulated the presence of invertebrate grazers. The abundance of piscivorous fish had a strong negative correlation with the large-scale distribution of bloom-forming macroalgae. Areas with depleted top-predator communities displayed massive increases in their prey, small-bodied fish, and high covers of ephemeral algae. Combining the results from the two experiments showed that excluding larger piscivorous fish: (1) increased the abundance of small-bodied predatory fish; (2) changed the size distribution of the dominating grazers, decreasing the smaller gastropod scrapers; and (3) increased the net production of ephemeral macroalgae. Effects of removing top predators and nutrient enrichment were similar and additive, together increasing the abundance of ephemeral algae many times. Predator effects depended on invertebrate grazers; in the absence of invertebrates there were no significant effects of predator exclusion on algal production. Our results provide strong support for regional declines of larger predatory fish in the Baltic Sea promoting algal production by decreasing invertebrate grazer control. This highlights the importance of trophic interactions for ecosystem responses to eutrophication. The view emerges that to achieve management goals for water quality we need to consider the interplay between top-down and bottom-up processes in future ecosystem management of marine resources.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.
Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C(4) plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (δ(13)C). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.
Large-scale exploitation of higher trophic levels by humans, together with global-scale nutrient enrichment, highlights the need to explore interactions between predator loss and resource availability. The hypothesis of exploitation ecosystems suggests that topdown and bottom-up control alternate between trophic levels, resulting in a positive relationship between primary production and the abundance of every second trophic level. Specifically, in food webs with three effective trophic levels, primary producers and predators should increase with primary production, while in food webs with two trophic levels, only herbivores should increase. We provided short-term experimental support for these model predictions in a natural benthic community with three effective trophic levels, where the number of algal recruits, but not the biomass of gastropod grazers, increased with algal production. In contrast, when the food web was reduced to two trophic levels by removing larger predators, the number of algal recruits was unchanged while gastropod grazer biomass increased with algal production. Predator removal only affected the consumer-controlled early life-stages of algae, indicating that both the number of trophic levels and the life-stage development of the producer trophic level determine the propagation of trophic cascades in benthic systems. Our results support the hypothesis that predators interact with resource availability to determine food-web structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.