Ribosome inactivating proteins (RIPs) are protein toxins that are of plant or microbial origin that inhibit protein synthesis by inactivating ribosomes. Recent studies suggest that RIPs are also capable of inducing cell death by apoptosis. Though many reports are available on cell death induced by RIPs, the mechanism involved is not well studied. Comparison of pathways of apoptosis and cellular events induced by various RIPs suggests a central role played by mitochondria, probably acting as an integrator of cellular stress and cell death. The purpose of this review is to compare the various apoptotic pathways that may be involved and propose a general pathway in RIP-induced cell death.
A new benzoyl hydrazone based chemosensor R is synthesized by Schiff base condensation of 2,6-diformyl-4-methylphenol and phenyl carbohydrazide and acts as a highly selective fluorescence sensor for Cu(2+) and Zn(2+) ions in aqueous media. The reaction of R with CuCl2 or ZnCl2 forms the corresponding dimeric dicopper(II) [Cu2(R)(CH3O)(NO3)]2(CH3O)2 (R-Cu(2+)) and dizinc(II) [Zn2(R)2](NO3)2 (R-Zn(2+)) complexes, which are characterized, as R, by conventional techniques including single-crystal X-ray analysis. Electronic absorption and fluorescence titration studies of R with different metal cations in a CH3CN/0.02 M HEPES buffer medium (pH = 7.3) show a highly selective binding affinity only toward Cu(2+)and Zn(2+) ions even in the presence of other commonly coexisting ions such as Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cd(2+), and Hg(2+). Quantification of the fluorescence titration analysis shows that the chemosensor R can indicate the presence of Cu(2+)and Zn(2+) even at very low concentrations of 17.3 and 16.5 ppb, respectively. R-Zn(2+) acts as a selective metal-based fluorescent sensor for inorganic pyrophosphate ion (PPi) even in the presence of other common anions such as F(-), Cl(-), Br(-), I(-), CH3COO(-), CO3(2-), HCO3(-), N3(-), SO4(2-), PPi, AMP, ADP, and ATP in an aqueous medium. The propensity of R as a bioimaging fluorescent probe to detect Cu(2+) and Zn(2+) ions in human cervical HeLa cancer cell lines and their cytotoxicity against human cervical (HeLa), breast cancer (MCF7), and noncancer breast epithelial (MCF10a) cells have also been investigated. R-Cu(2+) shows better cytotoxicity and sensitivity toward cancer cells over noncancer cells than R and R-Zn(2+) under identical conditions, with the appearance of apoptotic bodies.
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 μM, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.
Abrin belongs to the type II family of ribosome-inactivating proteins comprising a galactose-binding B chain coupled with a toxic A chain through a single disulphide linkage. Apart from its RNA-N-glycosidase activity, another role that has been recently ascribed to abrin was the induction of apoptosis. Studies were undertaken to determine the kinetics of these two activities. In the present study, we report that the signal for apoptosis is triggered at a time point later than the inhibition of protein synthesis. This apoptotic pathway induced by abrin is caspase 3-dependent but caspase 8-independent and involves mitochondrial membrane potential damage and reactive oxygen species production. Overexpression of B-cell lymphocytic-leukaemia proto-oncogene 2 was found to block this apoptotic pathway.
Abrin and agglutinin-I from the seeds of Abrus precatorius are type II ribosome-inactivating proteins that inhibit protein synthesis in eukaryotic cells. The two toxins share a high degree of sequence similarity; however, agglutinin-I is weaker in its activity. We compared the kinetics of protein synthesis inhibition by abrin and agglutinin-I in two different cell lines and found that ϳ200 -2000-fold higher concentration of agglutinin-I is needed for the same degree of inhibition. Like abrin, agglutinin-I also induced apoptosis in the cells by triggering the intrinsic mitochondrial pathway, although at higher concentrations as compared with abrin. The reason for the decreased toxicity of agglutinin-I became apparent on the analysis of the crystal structure of agglutinin-I obtained by us in comparison with that of the reported structure of abrin. The overall protein folding of agglutinin-I is similar to that of abrin-a with a single disulfide bond holding the toxic A subunit and the lectin-like B-subunit together, constituting a heterodimer. However, there are significant differences in the secondary structural elements, mostly in the A chain. The substitution of Asn-200 in abrin-a with Pro-199 in agglutinin-I seems to be a major cause for the decreased toxicity of agglutinin-I. This perhaps is not a consequence of any kink formation by a proline residue in the helical segment, as reported by others earlier, but due to fewer interactions that proline can possibly have with the bound substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.