In free-space optical communications and other applications, it is desirable to design optical beams that have reduced or even minimal scintillation. However, the optimization problem for minimizing scintillation is challenging, and few optimal solutions have been found. Here we investigate the general optimization problem of minimizing scintillation and formulate it as a convex optimization problem. An analytical solution is found and demonstrates that a beam that minimizes scintillation is incoherent light (i.e., spatially uncorrelated). Furthermore, numerical solutions show that beams minimizing scintillation give very low intensity at the receiver. To counteract this effect, we study a new convex cost function that balances both scintillation and intensity. We show through numerical experiments that the minimizers of this cost function reduce scintillation while preserving a significantly higher level of intensity at the receiver.
Computation of optical beams which minimize scintillation is a difficult challenge. Here, a computationally feasible method is described, and scintillation-minimizing beams are shown to have very weak intensity. Optimization should consider both scintillation and intensity.
When an optical beam propagates through a turbulent medium such as the atmosphere or ocean, the beam will become distorted. It is then natural to seek the best or optimal beam that is distorted least, under some metric such as intensity or scintillation. We seek to maximize the light intensity at the receiver using the paraxial wave equation with weak-fluctuation as the model. In contrast to classical results that typically confine original laser beams to be from a special class, we allow the beam to be general, which leads to an eigenvalue problem of a large-sized matrix with each entry being a multi-dimensional integral. This is an expensive and sometimes infeasible computational task in many practically reasonable settings. To overcome this expense, in a change from past calculations of optimal beams, we transform the calculation from physical space to Fourier space. Since the structure of the turbulence is commonly described in Fourier space, the computational cost is significantly reduced. This also allows us to incorporate some optional turbulence assumptions, such as homogeneous-statistics assumption, small-length-scale cutoff assumption, and Markov assumption, to further reduce the dimension of the numerical integral. The proposed methods provide a computational strategy that is numerically feasible, and results are demonstrated in several numerical examples. These results provide further evidence that special beams can be defined to have beam divergence that is small.
Finding general beams that maximize intensity leads to eigenvalue problem of a large matrix, with each entry being a multi-dimensional integral. We provide a computational strategy in Fourier space that makes this problem numerically feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.