Verticillium longisporum is a soil-borne vascular pathogen that causes reduced shoot growth and early senescence in Arabidopsis (Arabidopsis thaliana). Here, we report that these disease symptoms are less pronounced in plants that lack the receptor of the plant defense hormone jasmonic acid (JA), CORONATINE INSENSITIVE1 (COI1). Initial colonization of the roots was comparable in wild-type and coi1 plants, and fungal DNA accumulated to almost similar levels in petioles of wild-type and coi1 plants at 10 d post infection. Completion of the fungal life cycle was impaired in coi1, as indicated by the reduced number of plants with microsclerotia, which are detected on dead plant material at late stages of the disease. Contrary to the expectation that the hormone receptor mutant coi1 should display the same phenotype as the corresponding hormone biosynthesis mutant delayed dehiscence2 (dde2), dde2 plants developed wild-type-like disease symptoms. Marker genes of the JA and the JA/ethylene defense pathway were induced in petioles of wild-type plants but not in petioles of dde2 plants, indicating that fungal compounds that would activate the known COI1-dependent signal transduction chain were absent. Grafting experiments revealed that the susceptibility-enhancing COI1 function acts in the roots. Moreover, we show that the coi1-mediated tolerance is not due to the hyperactivation of the salicylic acid pathway. Together, our results have unraveled a novel COI1 function in the roots that acts independently from JA-isoleucine or any JA-isoleucine mimic. This COI1 activity is required for a yet unknown root-to-shoot signaling process that enables V. longisporum to elicit disease symptoms in Arabidopsis.
Patients with CF who have chronic P. aeruginosa infection show an age-dependent, quantitative, and qualitative impairment of Tregs. Modulation of Tregs represents a novel strategy to rebalance T-cell responses, dampen inflammation, and ultimately improve outcomes for patients with infective CF lung disease.
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease.
Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity of human (h)CFTR encoded by cmRNAhCFTR in vitro and ex vivo, quantified the expression by flow cytometry, determined its function using a YFP based assay and checked the immune response in human whole blood. Similarly, we examined the function of cmRNAhCFTR in vivo after intratracheal (i.t.) or intravenous (i.v.) injection of the assembled cmRNAhCFTR together with Chitosan-coated PLGA (poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 752 H)) nanoparticles (NPs) by FlexiVent. The amount of expression of human hCFTR encoded by cmRNAhCFTR was quantified by hCFTR ELISA, and cmRNAhCFTR values were assessed by RT-qPCR. Thereby, we observed a significant improvement of lung function, especially in regards to FEV0.1, suggesting NP-cmRNAhCFTR as promising therapeutic option for CF patients independent of their CFTR genotype.
With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.