The delivery of biologically active agents to the desired site in the body and intracellular organelles is still a big challenge despite efforts made for more than five decades. With the elaboration of synthetic methodologies to branched and hyperbranched macromolecules such as miktoarm stars and dendrimers, the focus has shifted to nanocarriers able to release and direct drug molecules to a desired location in a controlled manner. We present here recent developments in the field of targeted drug delivery with a focus on two specific macromolecular nanocarriers, dendrimers and miktoarm stars, and provide examples of these nanocarriers tested in different biological systems. A particular attraction of miktoarm stars is their versatility in achieving superior drug loading within their self-assembled structures. Advantages of dendrimers over linear polymers are that the former provide a platform for development of multivalent and multifunctional nanoconjugates, in addition to their ability to accommodate a large number of molecules inside, or at their surfaces.
Mitochondrial oxidative stress is associated with many neurodegenerative diseases, such as traumatic brain injury (TBI). Targeted delivery of antioxidants to mitochondria has failed to translate into clinical success due to their nonspecific cellular localization, poor transport properties across multiple biological barriers, and associated side effects. These challenges, coupled with the complex function of the mitochondria, create the need for innovative delivery strategies.Methods: Neutral hydroxyl-terminated polyamidoamine (PAMAM) dendrimers have shown significant potential as nanocarriers in multiple brain injury models. N-acetyl cysteine (NAC) is a clinically used antioxidant and anti-inflammatory agent which has shown significant potency when delivered in a targeted manner. Here we present a mitochondrial targeting hydroxyl PAMAM dendrimer-drug construct (TPP-D-NAC) with triphenyl-phosphonium (TPP) for mitochondrial targeting and NAC for targeted delivery to mitochondria in injured glia. Co-localization and mitochondrial content of mitochondria-targeted and unmodified dendrimer were assessed in microglia and macrophages in vitro via immunohistochemistry and fluorescence quantification. Therapeutic improvements of TPP-D-NAC over dendrimer-NAC conjugate (D-NAC) and free NAC were evaluated in vitro in microglia under oxidative stress challenge. In vivo neuroinflammation targeting was confirmed in a rabbit model of TBI.Results: TPP-conjugated dendrimer co-localized significantly more with mitochondria than unmodified dendrimer without altering overall levels of cellular internalization. This targeting capability translated to significant improvements in the attenuation of oxidative stress by TPP-D-NAC compared to D-NAC and free NAC. Upon systemic administration in a rabbit TBI model, TPP-conjugated dendrimer co-localized specifically with mitochondria in activated microglia and macrophages in the white matter of the ipsilateral/injured hemisphere, confirming its BBB penetration and glial targeting capabilities.Conclusion: D-NAC has shown promising efficacy in many animal models of neurodegeneration, and this work provides evidence that modification for mitochondrial targeting can further enhance its therapeutic efficacy, particularly in diseases where oxidative stress-induced glial cell death plays a significant role in disease progression.
Aims: To evaluate AMG 701, a BiTE® molecule binding BCMA on MM cells and CD3 on T cells, in RR MM (Amgen, NCT03287908); primary objective was to evaluate safety and tolerability and estimate a biologically active dose; secondary objectives were to characterize pharmacokinetics (PK), anti-myeloma activity per IMWG criteria, and response duration. Methods: Patients with MM RR or intolerant to ≥3 lines [proteasome inhibitor (PI), IMiD, anti-CD38 Ab as available] received AMG 701 IV infusions weekly in 4-week cycles until disease progression (PD). A 0.8-mg step dose was added prior to target doses ≥1.2 mg to prevent severe cytokine release syndrome (CRS). Target dose was achieved by day 8 or sooner with earlier escalation. Exclusion criteria included: solely extramedullary disease; prior allogeneic stem cell transplant (SCT) in the past 6 months; prior autologous SCT in the past 90 days; CNS involvement; prior anti-BCMA therapy. The first 3 cohorts (dose 5-45 μg) had 1 patient each, the next cohorts (0.14-1.2 mg) had 3-4 patients each, and subsequent cohorts (1.6-12 mg) were to have 3-10 patients each. Minimal residual disease (MRD) was measured by next-generation sequencing (NGS, ≤10-5 per IMWG) or flow cytometry (≤3×10-5). Results: As of July 2, 2020, 75 patients received AMG 701. Patients had a median age of 63 years, a median time since diagnosis of 5.9 years, and a median (range) of 6 (1-25) prior lines of therapy; 27% of patients had extramedullary disease, 83% prior SCT, and 93% prior anti-CD38 Ab; 68% were triple refractory to a PI, an IMiD, and an anti-CD38 Ab. Median (Q1, Q3) treatment duration was 6.1 (3.1, 15.3) weeks and median follow-up on treatment was 1.7 (1.0, 3.7) months. Patients discontinued drug for PD (n=47), AEs (adverse events, n=4, 3 CRS, 1 CMV / PCP pneumonia), withdrew consent (4), other therapy (1), investigator discretion (1), and CNS disease (1); 17 patients remain on AMG 701. The most common hematological AEs were anemia (43%), neutropenia (23%), and thrombocytopenia (20%). The most common non-hematological AEs were CRS (61%), diarrhea (31%), fatigue (25%), and fever (25%). CRS was mostly grade 1 (n=19) or 2 (n=21) per Lee Blood 2014 criteria. All grade 3 CRS (n=5, 7%) were assessed as dose-limiting toxicities (DLTs); all were reversible with corticosteroids and tocilizumab, with median duration of 2 days. CRS grade 3 drivers included transient LFT increases in 3 patients and hypoxia in 2 patients. Other DLTs were 1 case each of transient grade 3 atrial fibrillation, transient grade 3 acidosis, and grade 4 thrombocytopenia. Serious AEs (n=29, 39%) included infections (13), CRS (7), and asymptomatic pancreatic enzyme rise (2, no imaging changes, 1 treatment related). There were 4 deaths from AEs, none related to AMG 701 (2 cases of sepsis, 1 of retroperitoneal bleeding, and 1 of subdural hematoma). Reversible treatment-related neurotoxicity was seen in 6 patients, with median duration of 1 day, all grade 1-2, and associated with CRS in 4 patients. The response rate was 36% (16/45) at doses of 3-12 mg; at ≤1.6 mg (n=27), there was 1 response at 0.8 mg in a patient with low baseline soluble BCMA (sBCMA). With earlier dose escalation with 9 mg, the response rate was 83% (5/6, 3 PRs, 2 VGPRs), with 4/5 responders being triple refractory and 1 DLT of grade 3 CRS in this group. Across the study, responses included 4 stringent CRs (3 MRD-negative, 1 not yet tested), 1 MRD-negative CR, 6 VGPRs, and 6 PRs (Table). Median (Q1, Q3) time to response was 1.0 (1.0, 1.9) month, time to best response was 2.8 (1.0, 3.7) months, and response duration was 3.8 (1.9, 7.4) months, with maximum duration of 23 months; responses were ongoing at last assessment in 14/17 patients (Figure). MRD was tested in 4 patients (3 sCR, 1 CR) and all were negative (3 by NGS, 1 by flow); MRD negativity was ongoing at last observations up to 20 months later. AMG 701 exhibited a favorable PK profile in its target patient population of RR MM, with AMG 701 exposures increasing in a dose-related manner. Patient baseline sBCMA levels were identified as a determinant of AMG 701 free drug exposures; at higher doses, encouraging preliminary responses were seen even at the higher end of baseline sBCMA values. Summary: In this FIH study with ongoing dose escalation, AMG 701, an anti-BCMA BiTE® molecule, demonstrated a manageable safety profile, encouraging activity, and a favorable PK profile in patients with heavily pre-treated RR MM, supporting further evaluation of AMG 701. Disclosures Harrison: Janssen: Honoraria; Novartis: Consultancy, Honoraria, Patents & Royalties: wrt panobinostat; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria; CRISPR Therapeutics: Consultancy, Honoraria; Haemalogix: Consultancy; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; F. Hoffmann-La Roche: Consultancy, Honoraria. Minnema:Amgen: Honoraria; Servier: Honoraria; Gilead: Honoraria; Celgene Corporation: Honoraria, Research Funding; Janssen Cilag: Honoraria. Lee:Celgene: Consultancy, Research Funding; Genentech: Consultancy; GlaxoSmithKline: Consultancy, Research Funding; Genentech: Consultancy; Regeneron: Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Amgen: Consultancy, Research Funding. Spencer:AbbVie: Consultancy, Honoraria, Research Funding; Roche: Honoraria; Takeda: Honoraria, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Secura Bio: Consultancy, Honoraria; Servier: Consultancy, Honoraria, Research Funding; HaemaLogiX: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria; Pharmamar: Research Funding. Kapoor:Cellectar: Consultancy; Amgen: Research Funding; Janssen: Research Funding; Sanofi: Consultancy, Research Funding; Takeda: Honoraria, Research Funding; GlaxoSmithKline: Research Funding; Celgene: Honoraria. Madduri:Takeda: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Foundation Medicine: Consultancy, Honoraria; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Speaking Engagement, Speakers Bureau; Kinevant: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Speaking Engagement, Speakers Bureau; Legend: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Speaking Engagement, Speakers Bureau; Celgene: Consultancy, Honoraria. Larsen:Janssen Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ailawadhi:Cellectar: Research Funding; BMS: Research Funding; Medimmune: Research Funding; Amgen: Research Funding; Takeda: Honoraria; Janssen: Research Funding; Pharmacyclics: Research Funding; Celgene: Honoraria; Phosplatin: Research Funding. Kaufman:Amgen: Consultancy, Honoraria; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Consultancy, Honoraria; AbbVie: Consultancy; Celgene: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Tecnopharma: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sanofi/Genyzme: Consultancy, Honoraria. Raab:Takeda: Membership on an entity's Board of Directors or advisory committees; Heidelberg Pharma: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees, Research Funding. Hari:BMS: Consultancy; Amgen: Consultancy; GSK: Consultancy; Janssen: Consultancy; Incyte Corporation: Consultancy; Takeda: Consultancy. Iida:AbbVie: Research Funding; Merck Sharpe Dohme: Research Funding; Kyowa Kirin: Research Funding; Chugai: Research Funding; Sanofi: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Daiichi Sankyo: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Ono: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Davies:Celgene/BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotech: Honoraria; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees. Lesley:Amgen Inc.: Current Employment, Current equity holder in publicly-traded company. Upreti:Amgen Inc.: Current Employment, Current equity holder in publicly-traded company. Yang:Amgen Inc.: Current Employment, Current equity holder in publicly-traded company. Sharma:Amgen Inc.: Current Employment, Current equity holder in publicly-traded company. Minella:Amgen Inc.: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Beam Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Lentzsch:Mesoblast: Divested equity in a private or publicly-traded company in the past 24 months; Janssen: Consultancy; Caelum Biosciences: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Magenta: Current equity holder in private company; Sanofi: Research Funding; Karyopharm: Research Funding; Celularity: Consultancy; Sorrento: Consultancy. OffLabel Disclosure: AMG 701, a half-life extended BiTE® (bispecific T-cell engager) molecule is an investigational agent for multiple myeloma.
Impairments of mitochondrial functions have been associated with failure of cellular functions in different tissues, leading to various pathologies. We report here a mitochondria-targeted nanodelivery system for coenzyme Q10 (CoQ10) that can reach mitochondria and deliver CoQ10 in adequate quantities. Multifunctional nanocarriers based on ABC miktoarm polymers (A = poly(ethylene glycol (PEG), B = polycaprolactone (PCL), and C = triphenylphosphonium bromide (TPPBr)) were synthesized using a combination of click chemistry with ring-opening polymerization, self-assembled into nanosized micelles, and were employed for CoQ10 loading. Drug loading capacity (60 wt %), micelle size (25−60 nm), and stability were determined using a variety of techniques. The micelles had a small critical association concentration and were colloidally stable in solution for more than 3 months. The extraordinarily high CoQ10 loading capacity in the micelles is attributed to good compatibility between CoQ10 and PCL, as indicated by the low Flory−Huggins interaction parameter. Confocal microscopy studies of the fluorescently labeled polymer analog together with the mitochondria-specific vital dye label indicated that the carrier did indeed reach mitochondria. The high CoQ10 loading efficiency allowed testing of micelles within a broad concentration range and provided evidence for CoQ10 effectiveness in two different experimental paradigms: oxidative stress and inflammation. Combined results from chemical, analytical, and biological experiments suggest that the new miktoarm-based carrier provides a suitable means of CoQ10 delivery to mitochondria without loss of drug effectiveness. The versatility of the click chemistry used to prepare this new mitochondria-targeting nanocarrier offers a widely applicable, simple, and easily reproducible procedure to deliver drugs to mitochondria or other intracellular organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.