To develop and standardize a reliable in vitro dynamic thrombogenicity test protocol, the key test parameters that could impact thrombus formation need to be investigated and understood. In this study, we evaluated the effect of temperature on the thrombogenic responses (thrombus surface coverage, thrombus weight, and platelet count reduction) of various materials using an in vitro blood flow loop test system. Whole blood from live sheep and cow donors was used to assess four materials with varying thrombogenic potentials: negative-control polytetrafluoroethylene (PTFE), positivecontrol latex, silicone, and high-density polyethylene (HDPE). Blood, heparinized to a donor-specific concentration, was recirculated through a polyvinyl chloride tubing loop containing the test material at room temperature (22-24°C) for 1 hour, or at 37°C for 1 or 2 hours. The flow loop system could effectively differentiate a thrombogenic material (latex) from the other materials for both test temperatures and blood species (p < 0.05). However, compared with 37°C, testing at room temperature appeared to have slightly better sensitivity in differentiating silicone (intermediate thrombogenic potential) from the relatively thromboresistant materials (PTFE and HDPE, p < 0.05). These data suggest that testing at room temperature may be a viable option for dynamic thrombogenicity assessment of biomaterials and medical devices. ASAIO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.