Corresponding to each group Γ, a mixed graph G = (Γ,E,E′) called C-graph is assigned, such that the vertex set of G is the group itself. Two types of adjacency relations, that is, one way and two way communication is defined for vertices, to get a clear idea of the underlying group structure. An effort to answer the question, ‘Is there any relation between the order of an element in the group and degrees of the corresponding vertex in the C-graph’, by proposing a mathematical formula connecting them is made. Established an upper bound for the total number of edges in a C-graph G. For a vertex z in G, the concept Connector Edge CEz is defined, which convey some structural properties of the group Γ. The Connector Edge Set is defined for both a vertex z and the whole C-graph G, and is denoted as C E z and C E G respectively. Proposed the result, C E G = E if and only if |Γ| = 2n, n ∈ N. Finally, the properties of G, which the Connector Edge Set C E G carry out are discussed.
The injective chromatic number χi(G) [G. Hahn, J. Kratochvil, J. Siran and D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256(1–2) (2002) 179–192] of a graph G is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors. The nature of the coefficients of injective chromatic polynomials of complete graphs, wheel graphs and cycles is studied. Injective chromatic polynomial on operations like union, join, product and corona of graphs is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.