Twisting linear acenes out of planarity affects their electronic and optical properties, and induces chirality. However, it is difficult to isolate the effect of twisting from the substituent effect. Moreover, many twistacenes (twisted acenes) readily racemize in solution. Here, we introduce a series of twistacenes having an anthracene backbone diagonally tethered by an n-alkyl bridge, which induces a twist of various angles. This allows us to systematically monitor the effect of twisting on electronic and optical properties. We find that absorption is bathochromically shifted with increasing twist, while fluorescence quantum efficiency drops dramatically. The tethered twistacenes were isolated to their enantiomerically pure form, displaying strong chiroptical properties and anisotropy factor ( g-value). No racemization was observed even upon prolonged heating, rendering these tethered twistacenes suitable as enantiopure helical building units for π-conjugated backbones.
Conspectus The properties of polycyclic aromatic hydrocarbons are determined by their size, shape, and functional groups. Equally important is their curvature, since deviation from planarity can affect their optical, electronic, and magnetic properties and also induce chirality. Acenes, which can be viewed as one-dimensional nanocarbons, are often twisted out of planarity. Although twisting is expected to affect the above-mentioned properties, it is often overlooked. This Account focuses on helically locked twistacenes (twisted acenes) having different twist angles and the effect of twisting on their electronic and optical properties. Various synthetic approaches to inducing backbone twist in acenes are discussed, with a focus on the introduction of a diagonal tether across the core, as this minimizes confounding substituent effects. Using such tethered acenes as our model, we then discuss the effects of twisting the aromatic core on twistacene properties. Electronic properties. Increasing the degree of twist only slightly affects the HOMO and LUMO energy levels. Twisting leads to a small increase in the HOMO level and a decrease in the LUMO level, which produces an overall decrease in the HOMO–LUMO gap. Optical properties. As the degree of twist increases, a slight bathochromic shift is observed in the absorption spectra, in accordance with the decrease in the HOMO–LUMO gap. The fluorescence quantum efficiency and the fluorescence lifetime also decrease. This is likely to be related to an increasing rate of intersystem crossing, which arises from increased spin–orbit coupling. In addition, computational studies indicate that the S0–T1 energy gap decreases with increasing twist. Chiroptical properties. Increased twisting results in a larger Cotton effect and anisotropy factor, with the anisotropy factors of Ant-Cn being higher than those of longer helicenes. The parallel orientation of electric and magnetic transition dipole moments in twistacenes underlies this behavior and renders them as excellent chiroptical materials. The same trend is observed for the radical cations of twistacenes, which absorb in the NIR spectral region. Conjugation and delocalization. Twisting the anthracene radical cation up to 40° (13° per benzene ring) does not significantly affect spin delocalization, with the EPR spectra of twistacene radical cations showing that only slight localization occurs. This is in line with computational studies, which show only a small decrease in π-overlap for large acene twist. Overall, modifying the length of the tether in diagonally tethered acenes allows chemists to control core twist and to induce chirality. Twisting affects key optical, electronic, and chiroptical properties of acenes. Consequently, controlling the twist angle can improve the future design of nanocarbons with desired properties.
This research demonstrates the influence of the end-group on the self-assembly of conjugated polymers.
Acenest hat are twisted out of planarity are expected to display chiroptical properties. However,t he effect of twisting on the chiroptical properties of acenes has not been investigated computationally or experimentally.H erein, we present ac omputational investigation of the chiroptical properties of anthracenes to pentacenes, combined with an experimental study using as eries of helicallyl ocked acenes, twisted to different torsional angles in their enantiopure form.T he lowest energy transition, which is relatively weak in acenes, becomes dominanti nt heir circular dichroism spectra upon twisting. We find that the rotational strength of acenes consistently increases with increasing twist. The experimental data obtainedf rom enantiopure tethered twistacenes showt he same trend as the calculatedr esult, with as trong Cotton effect and anisotropy factor,r endering twisted acenes as excellent chiroptical materials.
Three new low-band-gap copolymers were synthesized by fusing dipyrromethene difluoroborane (BODIPY) as the acceptor (A) and thiophene-capped 5,5-bis(hexyloxymethyl)-5,6-dihydro-4H-cyclopenta[c]-thiophene (CPT) as the donor (D). The BODIPY unit was copolymerized through the ̀α′ positions (1 and 7 positions) in P1 and through the ̀β′ positions (2 and 6 positions) in P2 and P3. The additional acetylene unit between D and A in P3 enhanced the conjugation by minimizing the possible steric hindrance compared to that in P2, whereas P1 exhibited a more red-shifted absorption than P2 and P3 because of the more effective conjugaion through the ̀α′ positions of BODIPY. Importantly, the optical band gaps (E g opt) obtained from the onset of the absorption spectra are 1.28, 1.71, and 1.57 eV for P1, P2, and P3, respectively. P1 has the lowest band gap for any CPT-containing polymer. In the best transistor devices, a mobility improvement by 4 orders of magnitude from 3.22 × 10–6 cm2 V–1 s–1 for P2 to 0.01 cm2 V–1 s–1 for P1 was achieved. DFT calculations alongside measured charge-transport properties indicated that appreciable alterations in the optoelectronic properties of the polymers were achieved through minor changes in their structural features. The polymers were further characterized by thin-film X-ray diffraction, atomic force microscopy, and spectroelectrochemistry to investigate their material and electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.