Objective Cell-free DNA (cfDNA) is an attractive cancer biomarker, as it is thought to reflect a component of the underlying genetic makeup of the tumor and is readily accessible in serial fashion. Because chemotherapy regimens are expected to act rapidly on cancer and cfDNA is cleared from the blood within minutes, we hypothesized that cfDNA would reflect immediate effects of treatment. Here, we developed a method for monitoring long cfDNA fragments, and report dynamic changes in response to cytotoxic chemotherapy. Results Peripheral blood was obtained from 15 patients with metastatic castration-resistant prostate cancer (CRPC) immediately before and after cytotoxic chemotherapy infusion. cfDNA was extracted and quantified for long interspersed nuclear elements (LINE1; 297 bp) using qPCR. Targeted deep sequencing was performed to quantify the frequency of mutations in exon 8 of the androgen receptor (AR), a mutational hotspot region in CRPC. Single nucleotide mutations in AR exon 8 were found in 6 subjects (6/15 = 40%). Analytical variability was minimized by pooling independent PCR reactions for each library. In 5 patients, tumor-derived long cfDNA levels were found to change immediately after infusion. Detailed analysis of one subject suggests that cytotoxic chemotherapy can produce rapidly observable effects on cfDNA. Electronic supplementary material The online version of this article (10.1186/s13104-019-4312-2) contains supplementary material, which is available to authorized users.
The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa.
Using the method of directed collagen gel shrinkage, we have been fabricating heart valves and mitral valve chordae [1,2,3]. The principle involves mixing solubilized collagen with the appropriate cells. When the collagen-cell mixture is neutralized, soluble collagen reassembles into fibrils and a gel is created. When the gel is mechanically constrained, the collagen fibrils align in the direction of constraint. The generation of tensile force during contraction is crucial for the formation of highly aligned, compacted collagenous constructs. So far, inappropriate mechanical properties have been one of the main limitations of most collagen-based tissue equivalents. In this study, we focused on providing both biomechanical and biochemical stimuli to increase cellular proliferation, matrix synthesis, and hence improve the mechanical properties of the collagen constructs. We explored a number of holder materials and configurations, with an objective to maximize the lateral compaction of our constructs. We designed a bioreactor that can provide controlled static tension to our collagen constructs. We also developed a nutrition-fortified medium that includes trace elements (Zn2+, Cu2+, Fe2+ and Mn2+), various amino acids, and vitamins (A, B complex, and C). Our ultimate goal was to combine biomechanical and biochemical stimuli, and enhance the mechanical strength of our collagen constructs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.