Antibiotic exposure in children has been associated with the risk of Inflammatory Bowel Disease (IBD). Since antibiotic use in children or in their pregnant mother can affect how the intestinal microbiome develops, we asked whether the transfer of an antibiotic-perturbed microbiota from mothers to their children could affect their risk of developing IBD. Here we demonstrate that germ-free adult pregnant mice inoculated with a gut microbial community shaped by antibiotic exposure transmitted their perturbed microbiota to their offspring with high fidelity. Without any direct or continued exposure to antibiotics, this dysbiotic microbiota in the offspring remained distinct from controls for at least 21 weeks. By using both IL-10-deficient and wild type mothers, we showed that both inoculum and genotype shape the microbiota populations in the offspring. Since IL10−/− mice are genetically susceptible to colitis, we could assess the risk due to maternal transmission of an antibiotic-perturbed microbiota. We found that the IL10−/− offspring that had received the perturbed gut microbiota developed markedly increased colitis. Taken together, our findings indicate that antibiotic exposure shaping the maternal gut microbiota has effects that extend to their offspring with both ecological and long-term disease consequences.
The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. Bacterial pathogens utilize a myriad of complex regulatory networks to adapt gene expression in response to environmental cues encountered in the host. Trying to walk a fine balance of avoiding detection by the host immune system, while ensuring acquisition of all essential nutrients and promoting growth, bacteria employ transcriptional and posttranscriptional strategies to combat the host's defenses. A prominent example is the specific induction of iron and zinc uptake systems during infection, regulated by Fur and Zur, respectively, which allows pathogens to gain access to these essential transition metals in the restricted host environment (1, 2).Urinary tract infections (UTIs) are among the most common bacterial infections (3), presenting a significant public health burden amounting to annual costs of about 3.5 billion dollars in the United States alone (4). Although Proteus mirabilis causes a relatively small proportion of UTIs in healthy individuals, it is a common cause of cystitis and pyelonephritis in individuals with indwelling catheters or anatomical abnormalities of the urinary tract (4, 5).UTIs occur almost exclusively in an ascending route, meaning that bacteria of fecal origin gain entry to the bladder via the urethra and then spread to the kidneys via the ureters (4). Initially, bacteria adhere to host epithelial cells via proteinaceous supramolecular structures referred to as fimbriae (or pili) (6), which allow pathogens to withstand the mechanical flow of urine (5)...
Summary• Here, we investigated the genetic underpinnings of pollination-related floral phenotypes in Thalictrum, a ranunculid with apetalous flowers. The variable presence of petaloid features in other floral organs correlates with distinct adaptations to insect vs. wind pollination. Conical cells are present in sepals or stamens of insectpollinated species, and in stigmas. We characterized a Thalictrum ortholog of the Antirrhinum majus transcription factor MIXTA-like2, responsible for conical cells, from three species with distinct floral morphologies, representing two pollination syndromes.• Genes were cloned by PCR and analysed phylogenetically. Expression analyses were conducted by quantitative PCR and in situ hybridization, followed by functional studies in transgenic tobacco.• The cloned genes encode R2R3 MYB proteins closely related to Antirrhinum AmMYBML2 and Petunia hybrida PhMYB1. Spatial expression by in situ hybridization overlaps areas of conical cells. Overexpression in tobacco induces cell outgrowths in carpel epidermis and significantly increases the height of petal conical cells.• We have described the first orthologs of AmMIXTA-like2 outside the core eudicots, likely ancestral to the MIXTA/MIXTA-like1 duplication. The conserved role in epidermal cell elongation results in conical cells, micromorphological markers for petaloidy. This adaptation to attract insect pollinators was apparently lost after the evolution of wind pollination in Thalictrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.