Graph burning is a process of information spreading through the network by an agent in discrete steps. The problem is to find an optimal sequence of nodes that have to be given information so that the network is covered in least number of steps. Graph burning problem is NP-Hard for which two approximation algorithms and a few heuristics have been proposed in the literature. In this work, we propose three heuristics, namely, Backbone Based Greedy Heuristic (BBGH), Improved Cutting Corners Heuristic (ICCH), and Component Based Recursive Heuristic (CBRH). These are mainly based on Eigenvector centrality measure. BBGH finds a backbone of the network and picks vertex to be burned greedily from the vertices of the backbone. ICCH is a shortest path based heuristic and picks vertex to burn greedily from best central nodes. The burning number problem on disconnected graphs is harder than on the connected graphs. For example, burning number problem is easy on a path where as it is NP-Hard on disjoint paths. In practice, large networks are generally disconnected and moreover even if the input graph is connected, during the burning process the graph among the unburned vertices may be disconnected. For disconnected graphs, ordering the components is crucial. Our CBRH works well on disconnected graphs as it prioritizes the components. All the heuristics have been implemented and tested on several bench-mark networks including large networks of size more than 50K nodes. The experimentation also includes comparison to the approximation algorithms. The advantages of our algorithms are that they are much simpler to implement and also several orders faster than the heuristics proposed in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.