When placed on a temperature gradient, a Drosophila larva navigates away from excessive cold or heat by regulating the size, frequency, and direction of reorientation maneuvers between successive periods of forward movement. Forward movement is driven by peristalsis waves that travel from tail to head. During each reorientation maneuver, the larva pauses and sweeps its head from side to side until it picks a new direction for forward movement. Here, we characterized the motor programs that underlie the initiation, execution, and completion of reorientation maneuvers by measuring body segment dynamics of freely moving larvae with fluorescent muscle fibers as they were exposed to temporal changes in temperature. We find that reorientation maneuvers are characterized by highly stereotyped spatiotemporal patterns of segment dynamics. Reorientation maneuvers are initiated with head sweeping movement driven by asymmetric contraction of a portion of anterior body segments. The larva attains a new direction for forward movement after head sweeping movement by using peristalsis waves that gradually push posterior body segments out of alignment with the tail (i.e., the previous direction of forward movement) into alignment with the head. Thus, reorientation maneuvers during thermotaxis are carried out by two alternating motor programs: (1) peristalsis for driving forward movement and (2) asymmetric contraction of anterior body segments for driving head sweeping movement.
BackgroundMedical 3D printing is expanding exponentially, with tremendous potential yet to be realized in nearly all facets of medicine. Unfortunately, multiple informal subdomain-specific isolated terminological ‘silos’ where disparate terminology is used for similar concepts are also arising as rapidly. It is imperative to formalize the foundational terminology at this early stage to facilitate future knowledge integration, collaborative research, and appropriate reimbursement. The purpose of this work is to develop objective, literature-based consensus-building methodology for the medical 3D printing domain to support expert consensus.ResultsWe first quantitatively survey the temporal, conceptual, and geographic diversity of all existing published applications within medical 3D printing literature and establish the existence of self-isolating research clusters. We then demonstrate an automated objective methodology to aid in establishing a terminological consensus for the field based on objective analysis of the existing literature. The resultant analysis provides a rich overview of the 3D printing literature, including publication statistics and trends globally, chronologically, technologically, and within each major medical discipline. The proposed methodology is used to objectively establish the dominance of the term “3D printing” to represent a collection of technologies that produce physical models in the medical setting. We demonstrate that specific domains do not use this term in line with objective consensus and call for its universal adoption.ConclusionOur methodology can be applied to the entirety of medical 3D printing literature to obtain a complete, validated, and objective set of recommended and synonymous definitions to aid expert bodies in building ontological consensus.Electronic supplementary materialThe online version of this article (doi:10.1186/s41205-017-0012-5) contains supplementary material, which is available to authorized users.
Purpose To compare the diagnostic accuracy of different computed tomographic (CT) fractional flow reserve (FFR) algorithms for vessels with intermediate stenosis. Materials and Methods This cross-sectional HIPAA-compliant and human research committee-approved study applied a four-step CT FFR algorithm in 61 patients (mean age, 69 years ± 10; age range, 29-89 years) with a lesion of intermediate-diameter stenosis (25%-69%) at CT angiography who underwent FFR measurement within 90 days. The per-lesion diagnostic performance of CT FFR was tested for three different approaches to estimate blood flow distribution for CT FFR calculation. The first two, the Murray law and the Huo-Kassab rule, used coronary anatomy; the third used contrast material opacification gradients. CT FFR algorithms and CT angiography percentage diameter stenosis (DS) measurements were compared by using the area under the receiver operating characteristic curve (AUC) to detect FFRs of 0.8 or lower. Results Twenty-five lesions (41%) had FFRs of 0.8 or lower. The AUC of CT FFR determination by using contrast material gradients (AUC = 0.953) was significantly higher than that of the Huo-Kassab (AUC = 0.882, P = .043) and Murray law models (AUC = 0.871, P = .033). All three AUCs were higher than that for 50% or greater DS at CT angiography (AUC = 0.596, P < .001). Correlation of CT FFR with FFR was highest for gradients (Spearman ρ = 0.80), followed by the Huo-Kassab rule (ρ = 0.68) and Murray law (ρ = 0.67) models. All CT FFR algorithms had small biases, ranging from -0.015 (Murray) to -0.049 (Huo-Kassab). Limits of agreement were narrowest for gradients (-0.182, 0.147), followed by the Huo-Kassab rule (-0.246, 0.149) and the Murray law (-0.285, 0.256) models. Conclusion Clinicians can perform CT FFR by using a four-step approach on site to accurately detect hemodynamically significant intermediate-stenosis lesions. Estimating blood flow distribution by using coronary contrast opacification variations may improve CT FFR accuracy. RSNA, 2017 Online supplemental material is available for this article.
Background and Objectives 3D-printed models are increasingly used for surgical planning. We assessed the utility, accuracy and reproducibility of 3D printing to assist visualization of complex thoracic tumors for surgical planning. Methods Models were created from pre-operative images for three patients using a standard radiology 3D workstation. Operating surgeons assessed model utility using the Gillespie scale (1=inferior to 4=superior), and accuracy compared to intraoperative findings. Model variability was assessed for one patient for whom two models were created independently. The models were compared subjectively by surgeons and quantitatively based on overlap of depicted tissues, and differences in tumor volume and proximity to tissues. Results Models were superior to imaging and 3D visualization for surgical planning (mean score=3.4), particularly for determining surgical approach (score=4) and resectability (score=3.7). Model accuracy was good to excellent. In the two models created for one patient, tissue volumes overlapped by >86.5%, and tumor volume and area of tissues ≤1mm to the tumor differed by <15% and <1.8cm2, respectively. Surgeons considered these differences to have negligible effect on surgical planning. Conclusion 3D printing assists surgical planning for complex thoracic tumors. Models can be created by radiologists using routine practice tools with sufficient accuracy and clinically negligible variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.