Flaky tests are tests that can non-deterministically pass or fail for the same code version. These tests undermine regression testing efficiency, because developers cannot easily identify whether a test fails due to their recent changes or due to flakiness. Ideally, one would detect flaky tests right when flakiness is introduced, so that developers can then immediately remove the flakiness. Some software organizations, e.g., Mozilla and Netflix, run some tools—detectors—to detect flaky tests as soon as possible. However, detecting flaky tests is costly due to their inherent non-determinism, so even state-of-the-art detectors are often impractical to be used on all tests for each project change. To combat the high cost of applying detectors, these organizations typically run a detector solely on newly added or directly modified tests, i.e., not on unmodified tests or when other changes occur (including changes to the test suite, the code under test, and library dependencies). However, it is unclear how many flaky tests can be detected or missed by applying detectors in only these limited circumstances. To better understand this problem, we conduct a large-scale longitudinal study of flaky tests to determine when flaky tests become flaky and what changes cause them to become flaky. We apply two state-of-theart detectors to 55 Java projects, identifying a total of 245 flaky tests that can be compiled and run in the code version where each test was added. We find that 75% of flaky tests (184 out of 245) are flaky when added, indicating substantial potential value for developers to run detectors specifically on newly added tests. However, running detectors solely on newly added tests would still miss detecting 25% of flaky tests. The percentage of flaky tests that can be detected does increase to 85% when detectors are run on newly added or directly modified tests. The remaining 15% of flaky tests become flaky due to other changes and can be detected only when detectors are always applied to all tests. Our study is the first to empirically evaluate when tests become flaky and to recommend guidelines for applying detectors in the future.
No abstract
Deep learning (DL) systems can make our life much easier, and thus is gaining more and more attention from both academia and industry. Meanwhile, bugs in DL systems can be disastrous, and can even threaten human lives in safety-critical applications. To date, a huge body of research efforts have been dedicated to testing DL models. However, interestingly, there is still limited work for testing the underlying DL libraries, which are the foundation for building, optimizing, and running the DL models. One potential reason is that test generation for the underlying DL libraries can be rather challenging since their public APIs are mainly exposed in Python, making it even hard to automatically determine the API input parameter types due to dynamic typing. In this paper, we propose FreeFuzz, the first approach to fuzzing DL libraries via mining from open source. More specifically, FreeFuzz obtains code/models from three different sources: 1) code snippets from the library documentation, 2) library developer tests, and 3) DL models in the wild. Then, FreeFuzz automatically runs all the collected code/models with instrumentation to trace the dynamic information for each covered API, including the types and values of each parameter during invocation, and shapes of input/output tensors. Lastly, FreeFuzz will leverage the traced dynamic information to perform fuzz testing for each covered API. The extensive study of FreeFuzz on PyTorch and TensorFlow, two of the most popular DL libraries, shows that FreeFuzz is able to automatically trace valid dynamic information for fuzzing 1158 popular APIs, 9X more than state-of-the-art LEMON with 3.5X lower overhead than LEMON. Furthermore, FreeFuzz is able to detect 35 bugs for PyTorch and TensorFlow (with 31 confirmed by developers and 30 previously unknown).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.