Currently, numerous studies have shown that carbon nanofibres have mechanical properties that are replaced by other widely used fibres. The high tensile strength of the carbon fibres makes them ideal to use in polymer matrix composites. The high-strength fibres can be used in short form in a composite and mass-produced to meet the high demands of automotive applications. These composites are capable of addressing the strength requirement of nonstructural and structural components of the automotive industry. Due to these composite lightweight and high-strength weight ratios, the applications can be widely varying. The research for these materials is a never-ending process, as researchers and design engineers are yet to tap its full potential. This study fabricated phenolic resin with different wt% of carbon nanofibre (CNF). The percentage of the CNF as a filler material is varied from 1 to 4 wt%. Mechanical properties such as hardness, tensile strength, and XRD were investigated. Phenolic resin with 4 wt% of carbon nanofibre (CNF) exhibits maximum tensile strength and hardness of 43.8 MPa and 37.8 HV.
In the current scenario, many natural fibers available in the world can be used in various applications in the day-to-day life of biomedical products, automobile parts, industrial products, etc. Biocomposites can replace or serve as a framework allowing the regeneration of traumatized, degenerated tissues, and organs, thus, improving the patients’ quality of life. This research work is aimed at fabricating and investigating the natural biopolymer composites for biomedical applications. There are two sets of fiber composites fabricated in this research work. Ramie fiber considers a common base fiber for both composites. Hemp fibers and coir fibers were considered as filler in this research work. Biodegradable and bioresorbable polypropylene resins are used to fabricate the biocomposite using the compression moulding technique. Different proportion specimen mechanical properties were compared for bone fixtures and joint applications. The contour plots and bar charts were plotted to identify the variations in the volume percentage. The individual fiber specimens also have significant properties when compared with the composite fibers. Then, the individual superior property-based combinations such as hemp and coir fiber mixed with biodegradable and bioresorbable polypropylene/ramie fiber were recommended to produce joints and bone fixtures to alleviate pain for patients.
Carbon nanotubes are established as a superior form of carbon. These have superior characteristics in terms of mechanical and chemical properties when compared to the other fibres available. High-strength fibres can be employed in a composite in a short form and mass-produced to fulfil high demands in composite applications. These composites can meet the strength requirements of nonstructural and structural components in a wide range of industries. Because of their light weight and excellent strength-to-weight ratio, these composites can be used in a wide range of applications. With Young’s modulus as high as 1 TPa and tensile strength up to 63 GPa, they are among the stiffest and strongest fibres. There is currently a lot of interest in using carbon nanotubes in a matrix to take advantage of these features. There have been a variety of polymer matrices used, and nanotube/ceramic and nanotube/metal composites are gaining popularity. The study of these materials is an ongoing process, as researchers and design engineers have yet to realize their full potential. Carbon nanotubes (CNTs) are used in this study to create the composite with the resin. The percentage of CNT used as a filler material in the composite is varied from 1 to 4 percent, with the best percentage chosen for optimal mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.