Climate change and prolong drought adversely affect the grassland ecosystem, is precarious environmental constraint restricting plant growth and productivity. An experiment was conducted to alleviate adverse impacts of drought on physiochemical and morphological attributes of Leymus chinensis (Trin.) Tzvelev using brassinosteroid (BR). Treatments comprised well watered control (soil water contents 80%-85%) including Control (T0) and Control+ BR (TB0), moderate drought stress (soil water contents 50%-55%) including (T1) and T1+ BR (TB1) and severe drought stress (soil water contents 30%-35%) including (T2) and T2+ BR (TB2), they were laid out in completely randomized design with five replicates. Drought stress significantly impaired growth, osmotic substances, photosynthetic rate, and other physiochemical process. Moreover, perturbation in recorded attributes was aggravated by increasing drought severity from moderate to severe. Nevertheless, BR application (0.1 mg L-1) improved plant weight (38.8%-46.2%), relative water content (23.4%-29.1%), chlorophyll a (16.6%-56.5%), chlorophyll b (8.5%-16.9%), carotenoids (29.1%-67.3%), soluble sugars (1.7%-29.4%), free amino acids (15.4%-19.4%), and proline content (45.2%-79.4%); while, lowered malondialdehyde (34.8%-45.4%) at each level of drought. Likewise, BR application enhanced net photosynthetic rate (69.8%-165.1%), transpiration rate (45.0%-146.9%), water utilization efficiency (9.3%-16.0%), carboxylation utilization efficiency (80%-250%), sunlight utilization efficiency (66.6%-158.8%) and improved chlorophyll fluorescence characteristics at each level of drought, as compared to untreated controls. The adverse implications on physiochemical and morphological attributes were aggravated with the enhancing severity of drought from control to severe drought. Yet, 0.1 mg L-1 exogenous BR improved morphological and physiochemical attributes remarkably over respective controls and hence can be used to improve growth of drought stressed L. chinensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.