Background: To expand nasopharyngeal carcinoma (NPC) screening to larger populations, more practical NPC risk prediction models independent of Epstein–Barr virus (EBV) and other lab tests are necessary. Methods: Patient data before diagnosis of NPC were collected from hospital electronic medical records (EMR) and used to develop machine learning (ML) models for NPC risk prediction using XGBoost. NPC risk factor distributions were generated through connection delta ratio (CDR) analysis of patient graphs. By combining EMR-wide ML with patient graph analysis, the number of variables in these risk models was reduced, allowing for more practical NPC risk prediction ML models. Results: Using data collected from 1,357 NPC patients and 1,448 control patients, an optimal set of 100 variables (ov100) was determined for building NPC risk prediction ML models that had, the following performance metrics: 0.93-0.96 recall, 0.80-0.92 precision, and 0.83-0.94 AUC (area under curve). Aided by the analysis of top CDR-ranked risk factors, the models were further refined to contain only 20 practical variables (pv20), excluding EBV. The pv20 NPC risk XGBoost model achieved 0.79 recall, 0.94 precision, 0.96 specificity, and 0.87 AUC. Conclusions: This study demonstrated the feasibility of developing practical NPC risk prediction models using EMR-wide ML and patient graph CDR analysis, without requiring EBV data. These models could enable broader implementation of NPC risk evaluation and screening recommendations for larger populations in urban community health centers and rural clinics. Impact: These more practical NPC risk models could help increase NPC screening rate and identify more early-stage NPC patients.
Background Electronic medical records (EMRs) of patients with lung cancer (LC) capture a variety of health factors. Understanding the distribution of these factors will help identify key factors for risk prediction in preventive screening for LC. Objective We aimed to generate an integrated biomedical graph from EMR data and Unified Medical Language System (UMLS) ontology for LC, and to generate an LC health factor distribution from a hospital EMR of approximately 1 million patients. Methods The data were collected from 2 sets of 1397 patients with and those without LC. A patient-centered health factor graph was plotted with 108,000 standardized data, and a graph database was generated to integrate the graphs of patient health factors and the UMLS ontology. With the patient graph, we calculated the connection delta ratio (CDR) for each of the health factors to measure the relative strength of the factor’s relationship to LC. Results The patient graph had 93,000 relations between the 2794 patient nodes and 650 factor nodes. An LC graph with 187 related biomedical concepts and 188 horizontal biomedical relations was plotted and linked to the patient graph. Searching the integrated biomedical graph with any number or category of health factors resulted in graphical representations of relationships between patients and factors, while searches using any patient presented the patient’s health factors from the EMR and the LC knowledge graph (KG) from the UMLS in the same graph. Sorting the health factors by CDR in descending order generated a distribution of health factors for LC. The top 70 CDR-ranked factors of disease, symptom, medical history, observation, and laboratory test categories were verified to be concordant with those found in the literature. Conclusions By collecting standardized data of thousands of patients with and those without LC from the EMR, it was possible to generate a hospital-wide patient-centered health factor graph for graph search and presentation. The patient graph could be integrated with the UMLS KG for LC and thus enable hospitals to bring continuously updated international standard biomedical KGs from the UMLS for clinical use in hospitals. CDR analysis of the graph of patients with LC generated a CDR-sorted distribution of health factors, in which the top CDR-ranked health factors were concordant with the literature. The resulting distribution of LC health factors can be used to help personalize risk evaluation and preventive screening recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.