The endoplasmic reticulum (ER) dramatically restructures in open mitosis to become excluded from the mitotic spindle; however, the significance of ER reorganization to mitotic progression is not known. Here, we demonstrate that limiting ER membrane biogenesis enables mitotic chromosome movements necessary for chromosome biorientation and prevention of micronuclei formation. Aberrantly expanded ER membranes increase the effective viscosity of the mitotic cytoplasm to physically restrict chromosome dynamics - slowed chromosome motions impede correction of mitotic errors induced by transient spindle disassembly, leading to severe micronucleation. We define the mechanistic link between regulation of ER membrane biogenesis and mitotic fidelity by demonstrating that a CTDNEP1 lipin 1 mTOR regulatory network limits ER lipid synthesis to prevent chromosome missegregation. Together, this work shows that ER membranes reorganize in mitosis to enable chromosome movements necessary for mitotic error correction and reveal dysregulated lipid metabolism as a potential source of aneuploidy in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.