The proton-pumping NADH:ubiquinone oxidoreductase is the first complex in the respiratory chains of many purple bacteria and of mitochondria of most eucaryotes. The bacterial complex consists of 14 different subunits. The mitochondrial complex contains at least 29 additional proteins that do not directly participate in electron transfer and proton translocation. We analysed electron micrographs of isolated and negatively stained complex I particles from Escherichia coli and Neurospora crassa and obtained three-dimensional models of both complexes at medium resolution. Both have the same L-shaped overall structure with a peripheral arm protruding into the aqueous phase and a membrane arm extending into the membrane. The two arms of the bacterial complex are only slightly shorter than those of the mitochondrial complex although the protein mass of the former is only half of that of the latter. The presence of a novel redox group in the membrane arm of the complex is discussed. This group has been detected in the N. crassa complex by means of UV-visible spectroscopy. After reduction with an excess of NADH and reoxidation by the lactate dehydrogenase reaction, a reduced-minus-oxidized difference spectrum was obtained that cannot be attributed to the known cofactors flavin mononucleotide (FMN) and the FeS clusters N1, N2, N3 and N4. Due to its positive midpoint potential the novel group is believed to transfer electrons from the FeS clusters to ubiquinone. Its role in proton translocation is discussed.
The proton-translocating NADH:ubiquinone oxidoreductase of mitochondria (complex I) is a large L-shaped multisubunit complex. The peripheral matrix arm contains one FMN and a number of iron-sulfur (FeS) clusters and is involved in NADH oxidation and electron transfer to the membrane intrinsic arm. There, following a yet unknown mechanism, the redox-driven proton translocation and the ubiquinone reduction take place. Redox groups that would be able to link electron transfer with proton translocation have not been found so far in the membrane arm. We searched for such groups in complex I isolated from Neurospora crassa. Under anaerobic conditions, the preparation was analyzed in different redox states by means of UV/VIS and EPR spectroscopy. Absorption bands in the UV/VIS redox difference spectra were found which cannot be attributed to the FMN or the EPR detectable FeS clusters. The existence of two novel groups is postulated and their possible locations in the electron pathway and their roles in proton translocation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.