Background: Severe plasma prekallikrein (PK) deficiency is an autosomal-recessive defect characterized by isolated activated partial thromboplastin time prolongation. To date, no comprehensive methodologically firm analysis has investigated the diagnostic, clinical, and genetic characteristics of PK deficiency, and its prevalence remains unknown.Patients/Methods: We described new families with PK deficiency, retrieved clinical and laboratory information of cases systematically searched in the (gray) literature, and collected blood of these cases for complementary analyses. The Genome Aggregation Database (gnomAD) and the population-based Gutenberg Health Study served to study the prevalence of mutations and relevant genetic variants. Results:We assembled a cohort of 111 cases from 89 families and performed new genetic analyses in eight families (three unpublished). We identified new KLKB1 mutations, excluded the pathogenicity of some of the previously described ones, and estimated a prevalence of severe PK deficiency of 1/155 668 overall and 1/4725 among Africans. One individual reported with PK deficiency had, in fact, congenital kininogen deficiency associated with decreased PK activity. One quarter of individuals had factor XII clotting activity below the reference range. Four major bleeding events were described in 96 individuals, of which 3 were provoked, for a prevalence of 4% and an annualized rate of 0.1%. The prevalence of cardiovascular events was 15% (6% <40 years; 21% 40-65 years; 33% >65 years) for an annualized rate of 0.4%. Conclusions:We characterized the genetic background of severe PK deficiency, critically appraised mutations, and provided prevalence estimates. Our data onThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. | 1599BARCO et Al.
Adult-onset familial insulinomatosis is a rare disorder with recurrent, severe hypoglycemia caused by multiple insulin-secreting pancreatic tumors. The etiology was unclear until the variant p.Ser64Phe in the transcription factor MAFA, a key coordinator of β-cell insulin secretion, was defined as the cause in two families. We here describe detailed genetic, clinical, and family analyses of two sisters with insulinomatosis, aiming to identify further disease causes. Using exome sequencing, we detected a novel, heterozygous missense variant, p.Thr57Arg, in MAFA’s highly conserved transactivation domain. The impact of the affected region is so crucial that in vitro expression studies replacing Thr57 have already been performed, demonstrating a phosphorylation defect with the impairment of transactivation activity and degradation. However, prior to our study, the link to human disease was missing. Furthermore, mild hyperglycemia was observed in six additional, heterozygote family members, indicating that not only insulinomatosis but also MODY-like symptoms co-segregate with p.Thr57Arg. The pre-described MAFA variant, p.Ser64Phe, is located in the same domain, impairs the same phosphorylation cascade, and results in the same symptoms. We confirm MAFA phosphorylation defects are important causes of a characteristic syndrome, thus complementing the pathophysiological and diagnostic disease concept. Additionally, we verify the high penetrance and autosomal dominant inheritance pattern.
Prekallikrein (PK) deficiency is a recessive trait with isolated aPTT prolongation. KLKB1 c.451dupT is common in Nigerians (7/600 alleles) and absent in a European group (0/600). To date, all genotyped PK‐deficient patients of African ancestry were homozygous for 451dupT. Diagnostics of isolated aPTT prolongation in African descendants should include PK testing. Abstract BackgroundSevere prekallikrein deficiency (PK deficiency) is an autosomal‐recessive condition thought to be very rare. Recently we reported that the previously unnoticed variant c.451dupT, p.Ser151Phefs*34 in KLKB1, which is listed in databases aggregating genome data, causes PK deficiency and is common in Africans according to gnomAD (allele frequency 1.43%). Patients/MethodsThe most common African (c.451dupT) and European (c.1643G>A, p.Cys548Tyr) PK deficiency causing KLKB1 variants were analyzed in two population‐based collectives of 300 Nigerian and 300 German subjects. Genome databases were evaluated for variant frequencies and ethnicity of the subjects. The geographic origin of PK‐deficient cases due to 451dupT was assessed. ResultsTwo of five patients with PK deficiency caused by homozygous 451dupT were African, one African American, one from Oman, and one of unknown origin. The frequency of 451dupT was 1.17% in the Nigerian collective (7/600 alleles); none had Cys548Tyr. Subjects with 451dupT were found among different Nigerian ethnicities. Both variants were absent in the European collective. Database research was compatible with these findings, even though mainly data of African Americans (451dupT: 1.12%‐1.78%) was accessible. A relevant number of non‐American Africans are included only in the 1000Genomes collective: 451dupT frequency was 1.29% in native Africans and 1.56% in African Caribbeans. ConclusionsThis study underlines the higher prevalence of PK deficiency among people with African descent compared to Europeans. In order to avoid delay of necessary surgical procedures in patients of African origin, diagnostic algorithms for isolated, unexplained, activated partial thromboplastin time prolongation in these subjects should include PK deficiency screening.
Germline defects in the transcription factor GATA1 are known to cause dyserythropoiesis with(out) anemia and variable abnormalities in platelet count and function. However, damaging variants closely located to the C-terminal zinc finger domain of GATA1 are nearly unknown. In this study, a 36-year-old male index patient and his 4-year-old daughter suffered from moderate mucocutaneous bleeding diathesis since birth. Whole exome sequencing detected a novel hemizygous GATA1 missense variant, c.886A>C p.T296P, located between the C-terminal zinc finger and the nuclear localization sequence with non-random X-chromosome inactivation in the heterozygous daughter. Blood smears from both patients demonstrated large platelet fractions and moderate thrombocytopenia in the index. Flow cytometry and electron microscopy analysis supported a combined α-/δ (AN-subtype)-storage pool deficiency as cause for impaired agonist-induced platelet aggregation (light transmission aggregometry) and granule exocytosis (flow cytometry). The absence of BCAM in the index (Lu(a-b-)) and its low expression in the daughter (Lu(a-b+)) confirmed a less obvious effect of defective GATA1 also on erythrocytes. Borderline anemia, elevated HbF levels, and differential transcription of GATA1-regulated genes indicated mild dyserythropoiesis in both patients. Furthermore, a mild SLC4A1 defect associated with a heterozygous SLC4A1 c.2210C>T p.A737V variant maternally transmitted in the daughter may modify the disease to mild spherocytosis and hemolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.