Cytokines are multifunctional mediators that classically modulate immune activity by receptor-mediated pathways. Macrophage migration inhibitory factor (MIF) is a cytokine that has a critical role in several inflammatory conditions but that also has endocrine and enzymatic functions. The molecular targets of MIF action have so far remained unclear. Here we show that MIF specifically interacts with an intracellular protein, Jab1, which is a coactivator of AP-1 transcription that also promotes degradation of the cyclin-dependent kinase inhibitor p27Kip1 (ref. 10). MIF colocalizes with Jab1 in the cytosol, and both endogenous and exogenously added MIF following endocytosis bind Jab1. MIF inhibits Jab1- and stimulus-enhanced AP-1 activity, but does not interfere with the induction of the transcription factor NFkappaB. Jab1 activates c-Jun amino-terminal kinase (JNK) activity and enhances endogenous phospho-c-Jun levels, and MIF inhibits these effects. MIF also antagonizes Jab1-dependent cell-cycle regulation by increasing p27Kip1 expression through stabilization of p27Kip1 protein. Consequently, Jab1-mediated rescue of fibroblasts from growth arrest is blocked by MIF. Amino acids 50-65 and Cys 60 of MIF are important for Jab1 binding and modulation. We conclude that MIF may act broadly to negatively regulate Jab1-controlled pathways and that the MIF-Jab1 interaction may provide a molecular basis for key activities of MIF.
Background-Atherosclerosis is a chronic inflammatory response of the arterial wall to injury. Macrophage migration inhibitory factor (MIF), a cytokine with potent inflammatory functions, was thus considered to be important in atherosclerotic lesion evolution. Methods and Results-We studied the presence and distribution of MIF immunoreactivity (MIF-IR) and MIF mRNA in internal mammary arteries with a normal histology and arteries with plaques in different stages of human atherosclerosis.To address a potential role for the coactivator Jab1 as a cellular mediator of MIF effects in vascular tissue, we correlated the expression of MIF to that of Jab1 by using immunohistochemistry and coimmunoprecipitation. We further sought to determine a potential functional role for endothelium-derived MIF in early atherogenesis by studying the effects of oxidized LDL on MIF expression in cultured human umbilical vascular endothelial cells. The results showed that MIF-IR and Jab1-IR are found in all cell types present in atherosclerotic lesions, that MIF-IR is upregulated during progression of atherosclerosis, that MIF is produced locally in the arterial wall, and that all MIF ϩ cells are simultaneously Jab1ϩ . Coimmunoprecipitation experiments demonstrated in vivo complex formation between MIF and Jab1 in plaques. MIF expression in human umbilical vascular endothelial cells and a macrophage line was upregulated after stimulation with oxidized LDL. Conclusions-MIF is produced abundantly by various cells in all types of human atherosclerotic lesions and thus may play an important role in early plaque development and advanced complicated lesions. MIF-Jab1 complexes could serve critical regulatory functions in atherosclerotic lesion evolution.
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.