The n-alkanes C(16)H(34), C(17)H(36), C(19)H(40), and C(25)H(52) have been imbibed and solidified in mesoporous, crystalline silicon with a mean pore diameter of 10 nm. The structures and phase sequences have been determined by x-ray diffractometry. Apart from a reduction and the hysteresis of the melting-freezing transition, we find a set of six discrete orientation states ("domains") of the confined alkane crystals with respect to the lattice of the silicon host. The growth process responsible for the domain selection is interpreted as a nanoscale version of the Bridgman technique known from single-crystal growth. Oxidation of the pore walls leads to extrusion of the hydrocarbons upon crystallization, whereas the solidified n-alkanes investigated in nonoxidized, porous silicon are thermodynamically stable.
Neutron spin echo spectra of the melts of n-hexatriacontane (C36) and poly(ethylene oxide) (PEO), 2 kg/mol, confined in circular channels with a mean diameter of 10 and 12 nm, respectively, in porous silicon, were recorded at Q values between 0.05 and 0.15 Å−1. The spectra were successfully analyzed in terms of a two-state model where wall-adsorbed molecules are immobile and free molecules have a bulk-like dynamics. For C36, we find an adsorbed bilayer at 364 K and a monolayer at 435 K (in both cases, the long axis of the molecules is oriented parallel to the surface) and no adsorbed layer at 512 K. For PEO, we find an adsorbed monolayer at 413 K. The results support the existence of a sticky boundary layer inferred from capillary filling experiments.
Neutron spin echo spectra of poly(ethylene oxide) (PEO) melts confined in porous silicon (the mean pore diameter: 13 nm) were recorded at Q = 0.05, 0.08, and 0.11 Å -1 and successfully analyzed in terms of a two-state model, where chains adsorbed to the pore walls exhibit much slower internal dynamics than in the bulk and their centers-of-mass do not move, while free chains have bulklike internal dynamics and diffuse within an infinite cylinder in the center of the pore. The radius of this cylinder was found to be 1.4 nm for PEO 3 kg/mol (3k); this corresponds to the thickness of the adsorbed layer to be approximately equal to the Flory radius. As opposed to PEO 10k, for which details on the center of mass diffusion could not be discerned, for PEO 3k the diffusion rate along the pore was found to be smaller than that in the radial direction.
We present an x-ray diffraction study on n -hexane in tubular silicon channels of approximately 10 nm diameter both as a function of the filling fraction f of the channels and as a function of temperature. Upon cooling, confined n -hexane crystallizes in a triclinic phase typical of the bulk crystalline state. However, the anisotropic spatial confinement leads to a preferred orientation of the confined crystallites, where the 001 crystallographic direction coincides with the long axis of the channels. The magnitude of this preferred orientation increases with the filling fraction, which corroborates the assumption of a Bridgman-type crystallization process being responsible for the peculiar crystalline texture. This growth process predicts for a channel-like confinement an alignment of the fastest crystallization direction parallel to the long channel axis. It is expected to be increasingly effective with the length of solidifying liquid parcels and thus with increasing f . In fact, the fastest solidification front is expected to sweep over the full silicon nanochannel for f=1 , in agreement with our observation of a practically perfect texture for entirely filled nanochannels.
We present a neutron and X-rays scattering study of the phase transitions of 4-n-octyl-4'-cyanobiphenyl (8CB) confined in unidirectional nanopores of porous alumina and porous silicon (PSi) membranes with an average diameter of 30 nm. Spatial confinement reveals a rich polymorphism, with at least four different low temperature phases in addition to the smectic A phase. The structural study as a function of thermal treatments and conditions of spatial confinement allows us to get insights into the formation of these phases and their relative stability. It gives the first description of the complete phase behavior of 8CB confined in PSi and provides a direct comparison with results obtained in bulk conditions and in similar geometric conditions of confinement but with reduced quenched disorder effects using alumina anopore membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.