Considerable disagreement exists on the linearity of the development of standing balance in children. This study aimed to use different traditional and nonlinear methods to investigate age-related changes in standing balance in preschoolers. A sample of 118 preschoolers took part in this study. A force platform was used to record the center of pressure during standing balance over 15 s in three conditions: eyes open, eyes closed, and/or head extended backward. Detrended fluctuation analysis (DFA), recurrence quantification analysis (RQA), and traditional measures were used to evaluate standing balance. The main results are as follows: (1) Higher range and SD in the anterior-posterior (AP) direction were observed for 5-year-old than for 4-year-old children, while higher DFA coefficient (at shorter time scales) and higher determinism and laminarity in the AP direction were found for 5-year-old children compared to 3- and 4-year-old children; and (2) as sensory conditions became more challenging, all traditional measures increased and DFA coefficients (at shorter and longer time scales) decreased in the AP and mediolateral directions, while determinism and laminarity significantly declined in the AP direction. In conclusion, although increased postural sway, 5-year-old preschool children’s balance performance improved, and their control strategy changed significantly compared with the younger preschoolers. Sensory perturbation (eye closure and/or head extension) changed preschoolers’ balance performance and control strategy. Moreover, both traditional and nonlinear methods provided complementary information on the control of standing balance in preschoolers.
The study aimed to (1) investigate the reliability and usefulness of a proposed angular analysis during a modified sit-and-reach (MSR) test, and (2) compare the proposed MSR angular analysis and the commonly used MSR distance to verify the influence of the anthropometric characteristics in preschoolers. 194 preschoolers participated in the study. Before testing, the anthropometric characteristics were collected. Each participant performed the MSR test twice. The MSR distance score was obtained from the starting point to the reaching point, while the MSR angle score was calculated according to the approximate hip flexion angle. Both the relative and absolute reliability were good for the angular analysis during an MSR test in preschoolers (ICC ranging from 0.82 to 0.91, CV% ranging from 8.21 to 9.40). The angular analysis demonstrated good usefulness, with a lower typical error than the smallest worthwhile change in 3- and 5-year-old groups. The MSR angle scores could eliminate the concern of the influence of anthropometric characteristics, while MSR distance and anthropometric characteristics (i.e., sitting height and arm length) were found to be weakly correlated. In conclusion, the angular analysis when performing the MSR test is reliable and appears to eliminate the concern regarding the limb length bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.