At the nonpermissive temperature, somatic embryogenesis of the temperature-sensitive (ts) carrot cell mutant ts11 does not proceed beyond the globular stage. This developmental arrest can be lifted by the addition of proteins secreted by wild-type cells to the culture medium. From this mixture of secreted proteins, a 32-kD glycoprotein, designated extracellular protein 3 (EP3), that allows completion of somatic embryo development in ts11 at the nonpermissive temperature was purified. On the basis of peptide sequences and biochemical characterization, EP3 was identified as a glycosylated acidic endochitinase. The addition of the 32-kD endochitinase to ts11 embryo cultures at the nonpermissive temperature appeared to promote the formation of a correctly formed embryo protoderm. These results imply that a glycosylated acidic endochitinase has an important function in early plant somatic embryo development.
Ton Bisseling,' At a nonpermissive temperature, somatic embryos of the temperature-sensitive (ts) carrot cell mutant tsll only proceed beyond the globular embryo stage in the presence of medium conditioned by wild-type embryos. The causative component in the conditioned medium has previously been identified as a 32-kD acidic endochitinase. In search of a function for this enzyme in plant embryogenesis, several compounds that contain oligomers of N-acetylglucosamine were tested for their ability to promote tsll embryo formation. Of these compounds, only the Rhizobium lipooligosaccharides or nodulation (Nod) factors were found to be effective in rescuing the formation of tsll embryos. These results suggest that N-acetylglucosamine-containing lipooligosaccharides from bacterial origin can mimic the effect of the carrot en-dochitinase. This endochitinase may therefore be involved in the generation of plant analogs of the Rhizobium Nod factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.