Coloring concentrates of carotenoid-rich plant materials are currently used in the food industry to meet the consumer’s demand for natural substitutes for food colorants. The production of shelf-stable powders of such concentrates comes with particular challenges linked to the sensitivity of the active component towards oxidation and the complexity of the composition and microstructure of such concentrates. In this study, different strategies for the stabilization of crystalline carotenoids as part of a natural carrot concentrate matrix during drying and storage were investigated. The evaluated approaches included spray- and freeze drying, the addition of functional additives, and oxygen free storage. Functional additives comprised carrier material (maltodextrin, gum Arabic, and octenyl succinic anhydride (OSA)-modified starch) and antioxidants (mixed tocopherols, sodium ascorbate). Degradation and changes in the physical state of the carotenoid crystals were monitored during processing and storage. Carotenoid losses during processing were low (>5%) irrespective of the used technology and additives. During storage, samples stored in nitrogen showed the highest carotenoid retention (97–100%). The carotenoid retention in powders stored with air access varied between 12.3% ± 2.1% and 66.0% ± 5.4%, having been affected by the particle structure as well as the formulation components used. The comparative evaluation of the tested strategies allows a more targeted design of processing and formulation of functional carrot concentrate powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.