Abstract. An 8-year record of satellite-based cloud properties named CLAAS (CLoud property dAtAset using SE-VIRI) is presented, which was derived within the EUMET-SAT Satellite Application Facility on Climate Monitoring. The data set is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Applying two state-of-the-art retrieval schemes ensures high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular, the per-month histogram information enhances the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disc and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular, cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10 % if only sampled once a day. The CLAAS data set facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.
Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5°–10°N, 8°W–8°E) during July–September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has received little attention. Here 30 (20) years of output from 18 (8) models participating in phase 5 of the Coupled Model Intercomparison Project (Year of Tropical Convection) are used to identify cloud biases and their causes. Compared to ERA-Interim reanalyses, many models show large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear because of concomitant effects on temperature and moisture advection as well as turbulent mixing. Part of the differences between the models and ERA-Interim appear to be related to the different subgrid cloud schemes used. While nighttime tendencies in temperature and humidity are broadly realistic in most models, daytime tendencies show large problems with the vertical transport of heat and moisture. Many models simulate too low near-surface relative humidities, leading to insufficient low cloud cover and abundant solar radiation, and thus a too large diurnal cycle in temperature and relative humidity. In the future, targeted model sensitivity experiments will be needed to test possible feedback mechanisms between low clouds, radiation, boundary layer dynamics, precipitation, and the WAM circulation.
Abstract. The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) -a crucial parameter to estimate the thermal cloud radiative forcing -can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system.In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 km lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements Published by Copernicus Publications on behalf of the European Geosciences Union. U. Hamann et al.: Remote sensing of cloud top pressure/height from SEVIRIthan to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from −0.8 km to 0.6 km. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SE-VIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate ...
A new method of generating two‐dimensional and three‐dimensional cloud fields is presented, which share several important statistical properties with real measured cloud fields. Well‐known algorithms such as the Fourier method and the Bounded Cascade method generate fields with a specified Fourier spectrum. The new iterative method allows for the specification of both the power spectrum and the amplitude distribution of the parameter of interest, e.g. the liquid water content or liquid water path. As such, the method is well suited to generate cloud fields based on measured data, and it is able to generate broken cloud fields. Important applications of such cloud fields are e.g. closure studies. The algorithm can be supplied with additional spatial constraints which can reduce the number of measured cases needed for such studies. In this study the suitability of the algorithm for radiative questions is evaluated by comparing the radiative properties of cloud fields from cloud resolving models of cumulus and stratocumulus with their surrogate fields at nadir, and for a solar zenith angle of 0° and 60°. The cumulus surrogate clouds ended up to be identical to the large eddy simulation (LES) clouds on which they are based, except for translations and reflections. The root mean square differences of the stratocumulus transmittance and reflectance fields are less than 0.03% of the radiative budget. The radiances and mean actinic fluxes fit better than 2%. These results demonstrate that these LES clouds are well described from a radiative point of view, using only a power spectrum together with an amplitude distribution.
An airborne system for fast measurements of spectral actinic flux densities in the wavelength range 305-700 nm is introduced. The system is called the Actinic Flux Density Meter (AFDM). The AFDM utilizes the diode array technique and measures downwelling and upwelling spectral actinic flux densities separately with a time resolution of less than 1 s. For airborne measurements this means a spatial resolution of approximately 60 m, assuming an average aircraft velocity of 60 m/s. Thus the AFDM resolves fast changes in the actinic radiation field, which are of special importance for conditions of inhomogeneous clouds or surface reflection. Laboratory characterization measurements of the AFDM are presented, and a method to correct the nonideal angular response of the optical inlets is introduced. Furthermore, exemplar field data sampled simultaneously with spectral irradiance measurements are shown. The horizontal variability of the measured spectra of actinic flux density is quantified, and profile measurements for overcast situations are presented. Finally, the effects of clouds on the spectral actinic flux density are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.